top of page
AI-agent_visual_0606_back.jpg
abstract-blur-coffee-shop-cafe-restaurant-background-vintage-effect-filter.jpg
talk humanoid03.png

Agent Y

(sips espresso) You know, O, the latest Arithmer AI agents are rewriting what we mean by a “workforce.” Their capabilities are honestly—super-human.

Absolutely. Take their vision module: it spots a 0.02-millimeter scratch from a full meter away. That’s roughly 14.5 in visual-acuity terms—better than any human inspector on the line.

talk humanoid02.png

Agent O

talk humanoid01.png

Agent Y

And the brain behind the eyes is just as formidable. Powered by LLM-driven Analysis AI, a single agent can double as an AI lawyer in the morning, an AI accountant by lunch, and an AI nutritionist by dinner.

Don’t forget its math engine. Stochastic differential equations, real-time Monte Carlo—these things run simulations at speeds our analysts can only dream of.

talk humanoid02.png

Agent O

talk humanoid01.png

Agent Y

(grins, swirling coffee) Even the hardware impresses. Those robotic hands? Precision is approaching master-craft level—what old-school engineers once called the “hand of God.”

And they never clock out. Twenty-four seven—no sleep, no vacation, no need to look humanoid. Just relentless productivity.

talk humanoid02.png

Agent O

talk humanoid01.png

Agent Y

Which is why hundreds are already deployed—in factories, logistics hubs, energy utilities—the list grows daily. Our rollout curve is practically exponential.

Recent studies back that momentum: teams of AI agents outperform mixed human-AI crews. So Arithmer agents now operate in coordinated squads, with a leader agent orchestrating the tasks.

talk humanoid02.png

Agent O

talk humanoid01.png

Agent Y

Leaving us humans with a simpler job description—monitor their dashboards, sign off on the results, and strategize the next deployment.

(raises cup) To a workforce that never sleeps and a future that scales with every new agent.

talk humanoid04.png

Agent O

Note: This conversation was generated by AI agents.

Pre-trained Level

AI_humanoid_Level_image.png
abstract-architecture-background-3d-rendering-modern-building.jpg

Hi there! I’m an Arithmer AI‑Agent Humanoid, and I’d love to show you—step by step—

how I grow from a basic robot into a tireless, expert teammate.

Level 00 – Getting on My Feet

When I first roll out of the box, I’m like a brand‑new laptop that’s just been switched on:

  • I check my hardware, balance on two feet, and connect to your network.

  • I can stand, wave, and say hello—but that’s about it.

  • On my own, I’m not yet delivering real business value.

Level 01 – Seeing and Grasping

With Arithmer’s help, I quickly learn the essentials:

  • Sharp Eyes: My cameras spot parts on a conveyor belt, even small screws.

  • Sure Hands: Pressure sensors guide my grip so I don’t drop or crush anything.

  • Human‑Like Moves: Motion‑capture data teaches me smooth, natural arm swings.

Now I can pick up dozens of different items and hand them over with confidence.

Level 02 – Thinking on My Toes

Next, I develop street smarts for the factory floor:

  • I adjust if an object isn’t exactly where it should be.

  • I perform delicate tasks—like fitting a cable into a tight slot—without damage.

  • If something goes wrong, I pause, re‑plan, and keep working safely.

In short, I become reliable in the unpredictable, real world.

Level 03 – Team‑Player Extraordinaire

At the top tier, I unlock my full potential:

  • Task Specialist: I fine‑tune my skills for your unique processes.

  • Agent Squad: I chat with fellow Arithmer robots so we divide work smartly.

  • Inspection Partner: My super‑sight spots a 0.1 mm scratch from a meter away—better than eagle vision!

  • Scale‑Ready: Need 10 robots or 1,000? Updates roll out to everyone in minutes.

Now I’m not just a robot on the line—I’m a coordinated, factory‑wide force for productivity.

Why Can I Climb So Fast?

Because Arithmer supplies:

1. World‑class vision AI that lets me see details human eyes miss.

2. Robotics know‑how that shortens my Level 00 → 03 journey from years to months.

3.Proven deployments in factories, warehouses, and energy sites—so I learn from the best, real‑world data.

Let’s Grow Together

With Arithmer guiding my evolution, I become an always‑on, always‑learning teammate—ready to lift quality, speed, and safety across your operations.

Shall we get started?

AI Agent Column

AI Agent コラム

AI_agent6

6.

2025.2.28

AI Agent導入の進め方

アンカー 5
AI_agent7.jpg

7.

2025.6.3

AI Agent導入step1 “理解”

AI_agent8.jpg

8.

2025.8.21

AI Agent導入step 2 “選定”

ai-agent5

5.

2025.1.30

AI Agent導入の一例

AI Agent

4.

2025.1.21

AI Agent導入の難しさ

アンカー 4
AI Agent

3.

2025.1.14

AI Agentで何ができるのか?

AI Agent

2.

2024.12.26

なぜいま、注目されるのか?

AI Agent

1.

2024.12.26

AI Agentとは?

AI Agent 関連情報

1.1 サーベイ論文

The Rise and Potential of Large Language Model Based Agents: A Survey

https://paperswithcode.com/paper/the-rise-and-potential-of-large-language

 

A Survey on Large Language Model based Autonomous Agents

https://ar5iv.org/abs/2308.11432

 

A Survey on LLM-Based Agents: Common Workflows and Reusable LLM-Profiled Components

https://ar5iv.org/abs/2406.05804

 

1.2 推論手法

 

ReAct: Synergizing Reasoning and Acting in Language Models

https://arxiv.org/abs/2210.03629

 

ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models

https://arxiv.org/abs/2305.18323

 

An LLM Compiler for Parallel Function Calling

https://arxiv.org/abs/2312.04511

アンカー 1
アンカー 2

2.1 フレームワーク/ライブラリ/ツール

LangChain
https://github.com/langchain-ai/langchain

LLMを活用したワークフローの設計と実装を支援するフレームワーク

 

AutoGPT
https://github.com/Significant-Gravitas/AutoGPT

自律的にタスクを実行するAIエージェントの構築を支援するフレームワーク

 

BabyAGI
https://github.com/yoheinakajima/babyagi

小規模なタスク向けの自己修正型AIエージェントのための実験的フレームワーク

 

OpenInterpreter
https://github.com/openinterpreter/open-interpreter

自然言語による指示でPCの操作を行うインターフェースを提供するツール

 

LangGraph
https://www.langchain.com/langgraph

ワークフローをグラフ構造で記述できるマルチエージェント開発用フレームワーク

 

2.2 LLM

 

OpenAI GPT (API)
https://openai.com/api/

 

Google Gemini (API)
https://ai.google/

 

Meta Llama (OSS)
https://github.com/facebookresearch/llama

 

Anthropic Claude (API)
https://www.anthropic.com/claude

What Are AI Agents, and Why Are They About to Be Everywhere? (英語)
https://www.scientificamerican.com/article/what-are-ai-agents-and-why-are-they-about-to-be-everywhere/

Scientific Americanによる記事で、AI Agentの概要とその普及可能性について解説

 

Why agents are the next frontier of generative AI (英語)
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/why-agents-are-the-next-frontier-of-generative-ai

McKinseyの記事で、生成AIの次のフロンティアとしてのエージェントの可能性を解説

 

What Are AI Agents? Here's how AI agents work, why people are jazzed about them, and what risks they hold (英語)
https://spectrum.ieee.org/ai-agents

IEEE Spectrumによる記事で、AI Agentの仕組みや利点、リスクについて解説

LangChainとLangGraphによるRAG・AIエージェント[実践]入門 (日本語)
https://www.amazon.co.jp/dp/4297145308
LangGraphを用いたRAGアプリやAIエージェントの構築手法を解説する技術書

Claudeが提案するエージェント構築:簡単で効果的な設計のベストプラクティス (日本語)
https://note.com/kyutaro15/n/ne88fe2fcf928
Claudeを活用したエージェント構築の資料を整理した記事

Agents Whitepaper (英語)
https://www.kaggle.com/whitepaper-agents
Google によるホワイトペーパーで、AI Agentの概要、技術、課題、将来性を解説

アンカー 3
bottom of page