top of page

AI Agent Column 9

2025.11.10

AI Agent導入step3 “設計”

9863.jpg

AI Agent導入の4ステップ「理解」「選定」「設計」「計画」。前回(第8回)はステップ2「選定」について、3つの評価軸に基づき、的確に適用業務を見極めることの重要性をお話ししました。 さて、今回はステップ3「(3)設計 (Design)」です。選定した業務に対し、AI Agentをどのように業務プロセスに組み込みむのかの to-be を描きます。

 

――――

 

AI Agentの業務への組み込みにおける3つの課題

 

第6回のコラムでも触れましたが、AI Agentの実業務への組み込みには、特有の課題が伴います。それは、AI Agentが持つ本質的な特性に起因します。実業務にAI Agentを組み込む際には、特に以下の3つの課題に正面から向き合い、対処していく必要があります。

1. 不確実な挙動

AI Agentの中核となるLLMは、その仕組み上、確率的(stochastic)に動作します。これは多様な応答を生む源泉ですが、常に予測通りの結果が得られるとは限らない、ということを意味します。従来のAI活用では最終判断を人が担うことが多かったですが、AI Agentには自律的な「判断」まで期待される場面が増えます。そのため、どこまでAIの柔軟性(確率性)を活かし、どこで確実性(決定論)を担保し、どのタイミングで人間が介入するのか、そのバランスを慎重に設計する必要が出てきます。

​​

2. 知識の不足

LLMは膨大な公開情報を学習しており、一見すると非常に博識に見えます。しかし、特定の業務を適切に遂行するために真に必要な、現場固有の専門知識や、経験に裏打ちされた「暗黙知」(例えば、顧客対応の細かなニュアンスや、特定の状況下での最適な判断など)は、学習データに含まれていないことがほとんどです。AI Agentが人間の「判断」や「調整」といった領域に踏み込む際、この知識不足がしばしばボトルネックとなります。これは単純なデータ追加で短期的に解決できるものではなく、運用を通じて知識を獲得し続ける「長期的な仕組み」の設計が求められます。

3. 要件・環境の変化

ビジネスを取り巻く環境や、業務の要件、利用するデータ、連携する外部システムの仕様などは、常に変化し続けます。導入時に完璧と思える設計をしたとしても、時間経過と共にそのパフォーマンスが劣化したり、現状の業務との間にズレが生じたりするのは避けられません。そのため、AI Agentを業務で継続的に利用するには、これらの変化を検知し、迅速に適応・改善していくための仕組み(例えば、継続的な評価プロセスやフィードバックループなど)を、あらかじめ設計に組み込んでおく必要があります。

 

課題に対処する設計アプローチ

AI Agentの核心的課題(不確実性、知識不足、変化)に立ち向かう設計アプローチとして、「フィードバック」に着目することが鍵となると考えています。つまり、AI Agentを運用する中で得られる様々な情報(フィードバック)を、いかに効果的に「取得」し、そして「活用」してシステムを進化させていくか、という観点です。

 

1. フィードバックの「取得」

まず重要なのは、どのようなフィードバックを、どうやって取得するかです。これには、タスクの「クリティカルさ」に応じた設計が有効です。

● クリティカルなタスク (更新系の処理や外部とのインタラクションなど)

人間による確認・修正をプロセスに組み込みます。ここで人間が行った判断や修正そのものが、AIに不足している知識を示す質の高いフィードバック(Human Feedback: HF)となります。

● ノンクリティカルなタスク(間違いの影響が小さい処理)

AIに自律的な実行とエラー対処を試みさせます。この過程でシステムが検知・記録したエラー情報や、その対処結果が、改善のためのフィードバックとなります。

2. フィードバックの「活用」

次に、取得したフィードバック(人間の修正やエラー情報)を、AI Agentの改善にどう繋げるかです。一回のフィードバックから以下の二通りの活用するのが効果的です。

● Deterministic 機構による同一事象への「確実な対応」

一度フィードバックが得られた事象(特定の指示や状況)に対しては、同じ失敗を繰り返さないことが重要です。得られた知見をシステムに登録・蓄積し、次回以降、同一事象が発生した際には、決定論的(Deterministic)機構がその知見に基づいて対応します。これにより、システムの信頼性・再現性が向上します

● tochastic 機構による類似事象への「柔軟な対応力向上」

過去のフィードバックが得られた事象とは完全には一致しない場合でも、類似の事象から学ぶことが期待されます。フィードバックから得られた知見を登録・蓄積し、LLMなどの確率的(Stochastic)機構に学習させることで、より適切な判断や応答ができるように進化させることができます。これによりAIの汎化能力が高まり、対応範囲が広がります

このように運用の中で自然にHumanフィードバックや Systemフィードバックを取得し、 Deterministic機構とStochastic機構に知見を取り込めるようなサイクルを設計することで、AI Agentは運用を通じて知識を蓄積し、不確実性を低減させ、変化にも適応していくことができると考えています。

 

――――

 

今回は、AI Agent導入のステップ3「設計」について、その核心的課題(不確実性、知識不足、変化)に対処するための重要な考え方として、「フィードバック」の取得と活用を中心とした設計アプローチをご紹介しました。 さて、次回(第10回)は、いよいよ最終ステップ「計画」です。これまで設計してきたAI Agentのto-beを実現するために、具体的な導入計画をどのように立てていくべきか、そのポイントを解説します。ぜひご期待ください。

bottom of page