top of page

Search

検索

275件の検索結果が見つかりました

ブログ記事(220)

  • 戸田建設に危険検知AIシステムを提供

    Arithmer株式会社(本社:東京都文京区、代表取締役社長:大田 佳宏)は、戸田建設株式会社(本社:東京都中央区、代表取締役社長:大谷 清介、以下「戸田建設」)に危険検知AIシステムを提供し、2025年9月から運用が開始されました。   ■提供したシステムについて 当社が提供する危険検知AIシステムは、危険な領域にモノが入った際に即時にアラートを発出するAIシステムです。 今回、戸田建設にて運用が開始されたシステムは、鉄筋加工機での作業に特化しています。その特徴は以下の通りです。 ・手の検知:作業中に危険な領域に手がかかってきたら、AIが即座に検知します。 ・機械動作の中止:検知後、APIを通じて機械に信号を送り、機械の動作を中止させます。 ・高速な反応速度:手の検知から機械動作の中止までの反応速度の速さが特徴です。 ■導入効果 本システムの導入により、戸田建設では、長時間作業などによる注意力低下が原因で、鉄筋加工機に手が巻き込まれる事故を防止することが可能になります。     Arithmer株式会社は、この危険検知AIシステムをはじめ、AIエージェントを活用したAIシステムを提供することで、お客様の様々な課題を解決し、お客様と社会の持続的成長を加速してまいります。     本件に関するお問い合わせ先 Arithmer株式会社 広報担当 TEL:03-5579-6683 e-maril:press@arithmer.co.jp

  • 当社の新ビジョン・新バリューを制定しました

    この度、当社のミッション・ビジョン・バリュー(MVV)のうち、ビジョンおよびバリューを刷新したことをお知らせいたします。 今回の刷新は、当社を取り巻くビジネス環境および社会情勢の変化を踏まえ、より一層の社会的価値創出とグローバル展開を目指すためのものです。最先端の数学とAI技術を活用し、持続可能な未来の実現に貢献するという当社の姿勢を、より明確に示す内容となっています。 ■新ビジョン To become a global innovator that accelerates the sustainable growth of our customers and society through cutting-edge mathematics and AI 最先端数学とAIで、お客様と社会の持続的成長を加速するグローバルイノベーターへ   ■新バリュー Customer Growth First 顧客価値を最大化する   Always Frontier 世界最先端の数学・AI技術を最速で実装し続ける   Math for Better Society 公益性と長期視点で意思決定する Arithmerは今後も、数学とAIの力で社会課題の解決に挑み、持続可能な未来の創造に貢献してまいります。 ミッション・ビジョン・バリュー(MVV)ページ: https://www.arithmer.co.jp/philosophy

  • 熊本日日新聞に当社の浸水AIの記事が掲載されました

    この度、熊本県を中心に発行されている熊本日日新聞(2025年9月14日発刊)に当社の浸水AIの記事が掲載されたことをお知らせします。   記事は下記のリンクより閲覧できますので、是非ご覧ください。 ※発行元の掲載許可を得ております。 https://kumanichi.com/articles/1890743

全て表示

その他のページ(54)

  • AIエージェント | Arithmer

    Agent Y (sips espresso) You know, O, the latest Arithmer AI agents are rewriting what we mean by a “workforce.” Their capabilities are honestly—super-human. Absolutely. Take their vision module: it spots a 0.02-millimeter scratch from a full meter away. That’s roughly 14.5 in visual-acuity terms—better than any human inspector on the line. Agent O Agent Y And the brain behind the eyes is just as formidable. Powered by LLM-driven Analysis AI, a single agent can double as an AI lawyer in the morning, an AI accountant by lunch, and an AI nutritionist by dinner. Don’t forget its math engine. Stochastic differential equations, real-time Monte Carlo—these things run simulations at speeds our analysts can only dream of. Agent O Agent Y (grins, swirling coffee) Even the hardware impresses. Those robotic hands? Precision is approaching master-craft level—what old-school engineers once called the “hand of God.” And they never clock out. Twenty-four seven—no sleep, no vacation, no need to look humanoid. Just relentless productivity. Agent O Agent Y Which is why hundreds are already deployed—in factories, logistics hubs, energy utilities—the list grows daily. Our rollout curve is practically exponential. Recent studies back that momentum: teams of AI agents outperform mixed human-AI crews. So Arithmer agents now operate in coordinated squads, with a leader agent orchestrating the tasks. Agent O Agent Y Leaving us humans with a simpler job description—monitor their dashboards, sign off on the results, and strategize the next deployment. (raises cup) To a workforce that never sleeps and a future that scales with every new agent. Agent O Note: This conversation was generated by AI agents. Pre-trained Level Hi there! I’m an Arithmer AI‑Agent Humanoid, and I’d love to show you—step by step— how I grow from a basic robot into a tireless, expert teammate. Level 00 – Getting on My Feet When I first roll out of the box, I’m like a brand‑new laptop that’s just been switched on: I check my hardware, balance on two feet, and connect to your network. I can stand, wave, and say hello—but that’s about it. On my own, I’m not yet delivering real business value. Level 01 – Seeing and Grasping With Arithmer’s help, I quickly learn the essentials: Sharp Eyes: My cameras spot parts on a conveyor belt, even small screws. Sure Hands: Pressure sensors guide my grip so I don’t drop or crush anything. Human‑Like Moves: Motion‑capture data teaches me smooth, natural arm swings. Now I can pick up dozens of different items and hand them over with confidence. Level 02 – Thinking on My Toes Next, I develop street smarts for the factory floor: I adjust if an object isn’t exactly where it should be. I perform delicate tasks—like fitting a cable into a tight slot—without damage. If something goes wrong, I pause, re‑plan, and keep working safely. In short, I become reliable in the unpredictable, real world. Level 03 – Team‑Player Extraordinaire At the top tier, I unlock my full potential: Task Specialist: I fine‑tune my skills for your unique processes. Agent Squad: I chat with fellow Arithmer robots so we divide work smartly. Inspection Partner: My super‑sight spots a 0.1 mm scratch from a meter away—better than eagle vision! Scale‑Ready: Need 10 robots or 1,000? Updates roll out to everyone in minutes. Now I’m not just a robot on the line—I’m a coordinated, factory‑wide force for productivity. Why Can I Climb So Fast? Because Arithmer supplies: 1. World‑class vision AI that lets me see details human eyes miss. 2. Robotics know‑how that shortens my Level 00 → 03 journey from years to months. 3.Proven deployments in factories, warehouses, and energy sites—so I learn from the best, real‑world data. Let’s Grow Together With Arithmer guiding my evolution, I become an always‑on, always‑learning teammate—ready to lift quality, speed, and safety across your operations. Shall we get started? お問い合わせ AI Agent Column AI Agent コラム アンカー 5 7. 2025.6.3 AI Agent導入step1 “理解” ボタン 8. 2025.8.21 AI Agent導入step 2 “選定” ボタン 9 2025.11.10 AI Agent導入step3 “設計” ボタン 6. 2025.2.28 AI Agent導入の進め方 ボタン 5. 2025.1.30 AI Agent導入の一例 ボタン 4. 2025.1.21 AI Agent導入の難しさ ボタン アンカー 4 3. 2025.1.14 AI Agentで何ができるのか? ボタン 2. 2024.12.26 なぜいま、注目されるのか? ボタン 1. 2024.12.26 AI Agentとは? ボタン AI Agent 関連情報 1. 論文 2. OSS/サービス 3. 解説記事/書籍 1. 論文 1.1 サーベイ論文 The Rise and Potential of Large Language Model Based Agents: A Survey https://paperswithcode.com/paper/the-rise-and-potential-of-large-language A Survey on Large Language Model based Autonomous Agents https://ar5iv.org/abs/2308.11432 A Survey on LLM-Based Agents: Common Workflows and Reusable LLM-Profiled Components https://ar5iv.org/abs/2406.05804 1.2 推論手法 ReAct: Synergizing Reasoning and Acting in Language Models https://arxiv.org/abs/2210.03629 ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models https://arxiv.org/abs/2305.18323 An LLM Compiler for Parallel Function Calling https://arxiv.org/abs/2312.04511 アンカー 1 アンカー 2 2. OSS/サービス 2.1 フレームワーク/ライブラリ/ツール LangChain https://github.com/langchain-ai/langchain LLMを活用したワークフローの設計と実装を支援するフレームワーク AutoGPT https://github.com/Significant-Gravitas/AutoGPT 自律的にタスクを実行するAIエージェントの構築を支援するフレームワーク BabyAGI https://github.com/yoheinakajima/babyagi 小規模なタスク向けの自己修正型AIエージェントのための実験的フレームワーク OpenInterpreter https://github.com/openinterpreter/open-interpreter 自然言語による指示でPCの操作を行うインターフェースを提供するツール LangGraph https://www.langchain.com/langgraph ワークフローをグラフ構造で記述できるマルチエージェント開発用フレームワーク 2.2 LLM OpenAI GPT (API) https://openai.com/api/ Google Gemini (API) https://ai.google/ Meta Llama (OSS) https://github.com/facebookresearch/llama Anthropic Claude (API) https://www.anthropic.com/claude 3. 解説記事/書籍 What Are AI Agents, and Why Are They About to Be Everywhere? (英語) https://www.scientificamerican.com/article/what-are-ai-agents-and-why-are-they-about-to-be-everywhere/ Scientific Americanによる記事で、AI Agentの概要とその普及可能性について解説 Why agents are the next frontier of generative AI (英語) https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/why-agents-are-the-next-frontier-of-generative-ai McKinseyの記事で、生成AIの次のフロンティアとしてのエージェントの可能性を解説 What Are AI Agents? Here's how AI agents work, why people are jazzed about them, and what risks they hold (英語) https://spectrum.ieee.org/ai-agents IEEE Spectrumによる記事で、AI Agentの仕組みや利点、リスクについて解説 LangChainとLangGraphによるRAG・AIエージェント[実践]入門 (日本語) https://www.amazon.co.jp/dp/4297145308 LangGraphを用いたRAGアプリやAIエージェントの構築手法を解説する技術書 Claudeが提案するエージェント構築:簡単で効果的な設計のベストプラクティス (日本語) https://note.com/kyutaro15/n/ne88fe2fcf928 Claudeを活用したエージェント構築の資料を整理した記事 Agents Whitepaper (英語) https://www.kaggle.com/whitepaper-agents Google によるホワイトペーパーで、AI Agentの概要、技術、課題、将来性を解説 アンカー 3

  • Arithmer株式会社 | 数学とAIで社会課題を解決する

    Arithmer(アリスマー)株式会社は、数学で社会課題を解決することをミッションとし、顧客とパートナーのDX化に寄り添うAI開発会社です。AIエージェント、浸水AI、予兆AIなどさまざまなソリューションを提供します。 ARITHMETICS FOCUSES ON SOCIAL CHALLENGES. ARITHMETICS FOCUSES ON SOCIAL CHALLENGES. ARITHMETICS FOCUSES ON SOCIAL CHALLENGES. ARITHMETICS FOCUSES ON SOCIAL CHALLENGES. 数学で社会課題を解決す る。 News 戸田建設に危険検知AIシステムを提供 ニュースリリース 10月27日 当社の新ビジョン・新バリューを制定しました ニュースリリース 10月15日 熊本日日新聞に当社の浸水AIの記事が掲載されました 社長インタビュー 9月29日 金沢シーサイドFMのラジオ番組に当社代表が出演、YouTubeでアーカイブを公開 社長インタビュー 9月16日 モノ・マガジン9.16号に当社の浸水AIが紹介されました 社長インタビュー 9月3日 お知らせ ニュース一覧へ 事業内容 Solutions AIエージェント ボタン 製造AI ボタン インフラAI ボタン リテールAI ボタン 風力AI ボタン 物流AI ボタン ボタン バイオAI ボタン 浸水AI ボタン 主な取引先 ※正式にロゴ掲載許可をいただいたお取引先様のみアルファベット順に掲載しております。

  • 運転AI | 数学とAIで社会課題を解決するArithmer

    AI技術×シミュレーションで圧倒的に速い解析時間を実現します。シミュレーションを行うには、知識や膨大な試行回数が必要になり、結果が出るまで数ヶ月を要することがあります。 私たちの流体予測AIシステムでは、これら課題を解決し、活用場面を広げていきます。 運転AI Drive Support AI 運転支援や空間把握、モニタリングなど、動画解析を日常生活の基盤に 車と人の安心・安全をサポートします。車載カメラ映像の解析による注意喚起や、スマートフォンアプリによるリアルタイムアラートなど、目的や環境に応じたシステムを利用できます。 お問い合わせはこちら こんなお悩みありませんか? 工場内カートや大型トラックの 巻き込みによる接触事故 交通事故(人身事故)発生時の 社会的影響 熟練ドライバーの不足 運転AIはそんなあなたの課題 を解決します 運 転AIの特長 動画解析技術を用いて 危険状態を検知する 車体に取り付けたカメラで車両周辺を監視車両側面や後方を監視し、障害物を検知すると注意を喚起します。 必要最小限のカメラだけで 車体の移動軌跡を測定し 障害物等への接触リスクを判定 カメラの設置台数を最小限にすることでコストの増加を抑え、AI画像解析により車両と人などとの接触リスクを低減します。 若手ドライバーでも安心・安全に運行が可能 危険を察知したらアラートを発信するため、運転経験が少ないドライバーでも安心して運行することができます。 ※画像はイメージです 自動運転システムにおける 予兆保全・異常検知 AGVやフォークリフトなどのシステムと合わせて実装することにより、危険エリアを自動的に調整・監視。接触事故を未然に防ぎます。移動に合わせて監視エリアを自動的に調整します。 INPUT 自動運転シス テムの動画像 AIシステム 自動運転システムとの組み合わせ OUTPUT 異常箇所の通知 安全運転支援システム 飛び出しや巻き込みが起きやすい場所をAIで学習し、事故を抑止します。また、車間距離を感知し、未然に追突事故を抑止します。 INPUT ドライブレコーダーの撮影データ AIシステム 車や二輪車、人、 信号、標識などを 検知 独自のデータを 元にした危険 箇所 の特定 OUTPUT ドライバーへの注意喚起 危険箇所の事前通知 ※画像はイメージです ※画像はイメージです 農業における自動運転開発 農業における人手不足問題を解消し、高い生産性を実現します。 INPUT 準天候衛星シス テム「みちびき」 による現在地の 特定 AIシステム あらかじめ 作成 された 地図デー タ から最適 ルー トを生成 OUTPUT 倉庫から田畑へ 移動 植え付け/収穫 の自動化 導入事例 ※画像はイメージです トヨタ自動車株式会社様 工場内運搬カートの後方安全に関する特許をトヨタ自動車と共同で出願 より詳しく 導入までの流れ ヒアリング 現状についてヒアリングを行い、弊社のソリューションで課題解決できるか確認致します。 要件定義/本契約 カメラの仕様、1日あたりの撮影回数・カメラ台数など運用に必要な条件を確認。その後、見積提出・本契約になります。 システム構築 要件定義に基づきシステム構築を行います。 運用開始 構築したシステムを提供し、お客様にて運用を開始いただきます。安定稼働を目指し、弊社にてアフターサポートを行います。 Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問合せください お問い合わせ

全て表示
bottom of page