top of page

Search

検索

空の検索で51件の結果が見つかりました。

  • AIエージェント | Arithmer

    AI Agent Column AI Agent コラム 5. 2025.1.30 AI Agent導入の一例 ボタン 6. 2025.2.28 AI Agent導入の進め方 ボタン アンカー 5 7. 2025.6.3 AI Agent導入step1 “理解” ボタン 4. 2025.1.21 AI Agent導入の難しさ ボタン アンカー 4 3. 2025.1.14 AI Agentで何ができるのか? ボタン 2. 2024.12.26 なぜいま、注目されるのか? ボタン 1. 2024.12.26 AI Agentとは? ボタン AI Agent 関連情報 1. 論文 2. OSS/サービス 3. 解説記事/書籍 1. 論文 1.1 サーベイ論文 The Rise and Potential of Large Language Model Based Agents: A Survey https://paperswithcode.com/paper/the-rise-and-potential-of-large-language A Survey on Large Language Model based Autonomous Agents https://ar5iv.org/abs/2308.11432 A Survey on LLM-Based Agents: Common Workflows and Reusable LLM-Profiled Components https://ar5iv.org/abs/2406.05804 1.2 推論手法 ReAct: Synergizing Reasoning and Acting in Language Models https://arxiv.org/abs/2210.03629 ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models https://arxiv.org/abs/2305.18323 An LLM Compiler for Parallel Function Calling https://arxiv.org/abs/2312.04511 アンカー 1 アンカー 2 2. OSS/サービス 2.1 フレームワーク/ライブラリ/ツール LangChain https://github.com/langchain-ai/langchain LLMを活用したワークフローの設計と実装を支援するフレームワーク AutoGPT https://github.com/Significant-Gravitas/AutoGPT 自律的にタスクを実行するAIエージェントの構築を支援するフレームワーク BabyAGI https://github.com/yoheinakajima/babyagi 小規模なタスク向けの自己修正型AIエージェントのための実験的フレームワーク OpenInterpreter https://github.com/openinterpreter/open-interpreter 自然言語による指示でPCの操作を行うインターフェースを提供するツール LangGraph https://www.langchain.com/langgraph ワークフローをグラフ構造で記述できるマルチエージェント開発用フレームワーク 2.2 LLM OpenAI GPT (API) https://openai.com/api/ Google Gemini (API) https://ai.google/ Meta Llama (OSS) https://github.com/facebookresearch/llama Anthropic Claude (API) https://www.anthropic.com/claude 3. 解説記事/書籍 What Are AI Agents, and Why Are They About to Be Everywhere? (英語) https://www.scientificamerican.com/article/what-are-ai-agents-and-why-are-they-about-to-be-everywhere/ Scientific Americanによる記事で、AI Agentの概要とその普及可能性について解説 Why agents are the next frontier of generative AI (英語) https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/why-agents-are-the-next-frontier-of-generative-ai McKinseyの記事で、生成AIの次のフロンティアとしてのエージェントの可能性を解説 What Are AI Agents? Here's how AI agents work, why people are jazzed about them, and what risks they hold (英語) https://spectrum.ieee.org/ai-agents IEEE Spectrumによる記事で、AI Agentの仕組みや利点、リスクについて解説 LangChainとLangGraphによるRAG・AIエージェント[実践]入門 (日本語) https://www.amazon.co.jp/dp/4297145308 LangGraphを用いたRAGアプリやAIエージェントの構築手法を解説する技術書 Claudeが提案するエージェント構築:簡単で効果的な設計のベストプラクティス (日本語) https://note.com/kyutaro15/n/ne88fe2fcf928 Claudeを活用したエージェント構築の資料を整理した記事 Agents Whitepaper (英語) https://www.kaggle.com/whitepaper-agents Google によるホワイトペーパーで、AI Agentの概要、技術、課題、将来性を解説 アンカー 3

  • AI Agent column5 | Arithmer

    AI Agent Column 5 2025.1.30 AI Agent導入の一例 これまでAI Agentの特徴やできることについて解説してきましたが、実際にそれを活用できるようになるまでのイメージがまだ付いていないという方もいらっしゃるかもしれません。そこで今回は、ある会社様に物品輸送を最適化するシステムを導入した時の経験談を書きたいと思います。 その会社様は当時、ある部門が抱える大きな業務において属人的な作業が多く、効率化が求められていました。 その効率化が求められていた業務を簡単に説明すると以下のような流れです: ①集められた情報の精査(不備の確認など) ②条件に基づく交渉 ③複数の選択肢から 「最適な」サービスを選定 最初にこの課題について相談を受けた時点では、その会社様もArithmerも具体的にどのようなデータを入力し、どのような結果を出力するシステムが必要なのか、あるべき姿をまだ掴めていない状況でした。 そこで、まずはコンサルティング的なアプローチで、データの活用方法について先方と議論することからプロジェクトをスタートしました。過去のデータをお借りし、数理的な分析を行うことで、業務の中で暗黙知となっていた重要なポイントを明確化しました。このプロセスは、AIエージェントの文脈で言うと、RAGに必要なデータを選別し、効果的に活用するための基盤を整備する作業です。 次にシステム開発を進めるにあたり、対象とする機能の範囲を絞ることが重要となります。今回のケースでは、上記①〜③に対応する機能のスコープを次のように設定しました。 ①初期段階のデータ精査をシステムで自動化 ②交渉については自動化はせず、交渉のための材料を提供する機能を設ける ③最終的な意思決定は人が行うが、その支援のためにシステムが「レコメンド」をする ここで「レコメンド」とは、入力されたデータを総合的に分析し、その結果をもとに選択肢を比較することを指します。条件が理想的に揃っている場合(例えば、コストが低く、スピードが早く、安全性が高いなど)を最適な選択肢とし、それとは対極の条件を低評価とします。各選択肢には多くの数値データやテキストデータが含まれています。このため、複数の選択肢を分析・比較する際の情報量は非常に膨大になります。従ってこのプロジェクトの中核は、この膨大な情報をいかに効率的に処理し、適切な評価を行う仕組みを実現するかという点でした。 案件ごとにモデルを柔軟に構築・調整できることは、Arithmerの大きな強みです。今回のケースでは、出力されるレコメンドに説明可能性が求められたため、確率論的(Stochastic)なアプローチではなく、決定論的(Deterministic)なモデルを採用しました。これにより、各条件がバランスよく反映されるパラメータ設定を行い、実用性の高いシステムを提供することができました(もちろん、他の案件では確率論的手法や両者を組み合わせたハイブリッドアルゴリズムが有効となる場合もあります)。 現在、このシステムは会社様に継続的にご利用いただいており、大変嬉しい限りです。また、近年のAI技術の進歩により、当初は人が担っていた交渉業務の自動化も実現可能な段階に近づいています。私たちとしても、このシステムのさらなる発展が非常に楽しみであり、引き続き改良を重ねていきたいと考えています。 ―――― 次回は、これから AI Agent の導入を検討しようという方々に向けて、検討すべきことやそのステップについて整理していきたいと思います。お楽しみに! 前の記事へ AIエージェントページへ 次の記事へ

  • Arithmer株式会社 | 数学とAIで社会課題を解決する

    Arithmer(アリスマー)株式会社は、数学で社会課題を解決することをミッションとし、顧客とパートナーのDX化に寄り添うAI開発会社です。AIエージェント、浸水AI、予兆AIなどさまざまなソリューションを提供します。 ARITHMETICS FOCUS ON SOCIAL CHALLENGES. ARITHMETICS FOCUS ON SOCIAL CHALLENGES. ARITHMETICS FOCUS ON SOCIAL CHALLENGES. ARITHMETICS FOCUS ON SOCIAL CHALLENGES. 数学で社会課題を解決す る。 News お知らせ 鳴門教育大学へ学生の学びを可視化するスマホアプリ「セルデザ」を開発・提供 ニュースリリース 5月19日 BSテレビ東京で3月22日(土)放送「一柳良雄が問う 日本の未来」に当社代表が出演します メディア掲載 3月21日 Arithmer、パロマ・リームホールディングスと資本業務提携 ニュースリリース 2月18日 新春トップインタビューに弊社代表の記事が掲載されました。 社長インタビュー 1月17日 弊社のAI自動採寸システムを導入頂いているヤマダヤ様が取材されました。 メディア掲載 1月16日 ニュース一覧へ 事業内容 Solutions 製造AI ボタン インフラAI ボタン リテールAI ボタン 風力AI ボタン 物流AI ボタン ボタン バイオAI ボタン 浸水AI ボタン AIエージェント ボタン 主な取引先 ※正式にロゴ掲載許可をいただいたお取引先様のみアルファベット順に掲載しております。

  • 製造AI | 数学とAIで社会課題を解決するArithmer

    製造や加工の工程で発生する部品のばらつき判定や、自動運転のサポートなど、現場の暗黙知を組織知に変えるAIを開発・提供します。 製造AI Manufacturing AI 製造や加工の現場で起きるさまざまな困りごとをAIを用いて最適化する 製造や加工の工程で発生する部品の不良品判定や、自動運転のサポートなど、現場の暗黙知を組織知に変えるAIを開発・提供しています。 お問い合わせはこちら こんなお悩みありませんか? 工場内カートや大型トラックの 巻き込みによる接触事故 機械のトラブルによる 作業の停止時間をを短縮したい 加工後の検査精度を高め不良品出荷リスクを抑制したい 製造AIはそんなあなたの課題を解決します 製造AIの特長 動画解析技術を用いて 危険状態を検知 車体に取り付けたカメラで車両周辺や監視車両側面、後方を監視し、障害物を検知すると注意を喚起します。 画像検査のAIを活用し 機器異常の予兆を検知 機器の動きを動画像データで取得することで、異常(故障に至る前の予兆)を発見します。大きなトラブルを未然に防ぎ、作業ロスを低減します。 画像解析エンジンを活用し不良品の見逃しリスクを改善 既存の検査装置とAI画像解析エンジンを組み合わせることで、不良品の見逃しを削減。不良品出荷リスクと再検査工数の削減に貢献します。 ※画像はイメージです 生産設備の予兆保全 製造装置の通常サイクルを学習し、人の目では気付きにくい「いつもと違う変化」を察知します。これにより設備異常を早期に発見し、結果的に甚大な被害を予防します。 INPUT 通常動作の 動画 AIシステム 生産設備の 異常検知 OUTPUT 異常箇所の通知 自動運転システムにおける 予兆保全・異常検知 AGVやフォークリフトなどのシステムと実装することで、危険エリアを自動的に調整・監視。接触事故を未然に防ぎます。 エッジコンピュータを活用し、移動に合わせて監視エリアを自動的に調整することができ、リアルタイム検知が可能となります。 INPUT 動画像 OUTPUT 異常箇所の通知 AIシステム 自動運転システムとの組み合わせ ※画像はイメージです 導入事例 トヨタ自動車株式会社様 工場内運搬カートの後方安全に関する特許を共同で出願 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら

  • AI Agent column7 | Arithmer

    AI Agent Column 7 2025.6.3 AI Agent導入step1 “理解” こんにちは。ArithmerのAI Agent担当コンサルタントです。 AI Agent コラム、大分、時間が経ってしまいましたが、前回(第6回)は導入プロセスの全体像として4つのステップ「(1)理解」「(2)選定」「(3)設計」「(4)計画」をご紹介しました。AI Agentという新しい技術を使いこなし、ビジネス価値に繋げるためには、このステップを順に踏むことが重要です。 今回はその最初のステップの「(1) 理解」について掘り下げていきたいと思います。 ―――― 理解すべきこと 「ITとAIとの違い」についてはもうよくご存じの方も多いと思います。 では「従来のAIとAI Agentとの違い」について特に理解しなければいけないこととは一体何でしょうか? 従来のAIの適用は「教師あり学習」を業務に当てはめることがメインでした。特に分類や回帰といったタスクに取り組む教師あり学習では、「解きたい問題」に対して探索すべき変数は、主に「データ(前処理含む)」「アルゴリズム(モデル選択)」「ハイパーパラメータ」の組み合わせでした。もちろん、これも試行錯誤は必要でしたが、交差検証やグリッドサーチ、ベイズ最適化といった体系的な方法論がある程度存在し、探索空間の構造もある程度は見え、「どう頑張れば精度が上がりそうか」「どこが限界か」の見極めも、比較的、道筋が見えやすかったと言えます。これは言ってみれば、地図がある土地での探索に例えることができるでしょう。 ところが、AI Agentの世界は根本的に異なります。まず中核エンジンであるLLMのプロンプト調整だけでも、探索空間は、その構造も非常に複雑で、広さも膨大です。 それに加えて、他の部品(RAGの設定、ツールの種類と使い方、推論プロセスなど)との無数の組み合わせ方や、それぞれの調整項目が掛け合わさることで、全体の探索空間は文字通り爆発的に増大します。つまりAI Agentの活用は、未知の世界での探索に例えることができます。 この「質的にも量的にも桁違いに広大で、確立された方法論がない探索空間」をどう進むか、それが現在のAI Agentにおける大きな挑戦であり、導入を検討する上で理解しておくべきことの核心です。 理解するためのお薦めステップ この「リアルな難しさ」を前にして、私たちはどうすればAI Agentを本当に理解し、その可能性と限界を見極める実践的な感覚を身につけることができるのでしょうか? それは、「座学」、「実践」、「議論」という、一見シンプルに見えるサイクルを回すことに尽きると、私たちは考えています。 座学 : 書籍・論文・記事の調査や講座の受講などにより、知識を習得する 実践 : ChatGPTなどを介して、AI Agentの中核のLLMの能力を体感する 議論 : ①、②で得た気づきを言語化・共有し、チームとしての共通認識を築く 特にポイントとなるのが3番目のステップです。 知識の習得(①座学)や能力の体感(②実践)に、この言語化・共有(③議論)を加えることで、初めて以下のような価値が生まれます。 個人の理解が深まる : 自分の言葉で説明しようとすることで、曖昧だった理解が明確になり、思考が整理されます(暗黙知→形式知)。 客観性と多角的な視点が得られる : チームで共有し議論することで、「そういう見方もあるのか」「そのリスクは考えていなかった」といった多様なフィードバックやインプットが得られ、一人では気づけなかった偏りや盲点が修正されます(集合知の活用)。 組織としての前進が可能になる : 共通の言葉で議論し、認識を合わせることで、チームや組織として「何を理解し、次に何をすべきか」という合意形成ができ、具体的な計画や意思決定に繋げることができます。個人の学びが組織の力に変わるのです。 これが、私たちが「座学 」「実践 」に加えて「議論 」という3つ目のステップをお勧めする理由です。 ―――― さて、次回(第8回)は、いよいよステップ2「選定」です。AI Agentの強みを活かせる業務を具体的にどのように見極めていくのか、そのプロセスと評価のポイントについて詳しく解説していきます。ぜひご期待ください。 前の記事へ AIエージェントページへ

  • AI Agent column1 | Arithmer

    AI Agent Column 1 2024.12.26 AI Agentとは? 近年のAIの進化は目覚ましく、私たちは既に対話型AIや生成AIを日常的に活用しています。その中でもここ1・2年、特に注目されているのが "AI Agent" という概念です。AI Agentとは一体何でしょうか? これまでのAIと何が違うのでしょうか? AI Agentコラム第1回の本稿では、まずAI Agentとは何を指すのかを整理したいと思います。 ―――― AI Agent とは? 例えば、あなたが旅行の計画をしているとします。目的地や日程だけをAIに伝えると、最適なフライトを検索し、予約を完了してくれる。さらには、ホテルの予約やレストランの手配まで自律的に進めてくれる― ―これが、今注目されているAI Agentの一例です。 "AI Agent" という言葉自体は以前からありましたが、現在のような「大規模言語モデル(LLM)を活用し、自律的にタスクを遂行するシステム」の意味で使われ始めたのは、2023年4月ごろからです。具体的には、LangChain, Auto-GPT, BabyAGIなどのシステムが次々と登場し、それぞれがツール連携やタスク処理の新しい可能性を示しました。従来の対話型AIとは異なり、目標達成のために自ら情報を集めタスクを分解し実行する『行動するAI』という新しい方向性を打ち出したと言えます。これ以後このコンセプトが "AI Agent" として広まり、ビジネスや研究の分野で大きな注目を集めています。 このように "AI Agent" は幅のある概念ですが、このコラムでは次のように定義します。 「自律性、反応性、積極性、社会的能力を持ち、環境と相互作用して目標を達成するシステム」 これを図にすると以下のようになります。自律性、反応性、積極性、社会的能力という4つの特性が連携して、AI Agentが目標達成する仕組みを表しています。 ここで特に注目すべきは、「環境に作用して目標を達成する」という点です。従来の対話型AI(ChatGPTなど)は、ユーザーの問いに答える「受動的」な存在でした。しかし、AI Agentは目標に向けて自ら情報を探し、計画を立て、ツールや他者との連携を通じてタスクを遂行する「能動的」な存在へと発展しています。 従来の自動化との違いは? 「行動する」システム自体は以前からありました。 例えば、RPA(Robotic Process Automation )は2010年代前半ごろから広く認識され実用化している技術です。RPAも環境を観測し、自律的に環境に対して行動を起こすことができます。ただし、その判断はルールに従って行われ、そのルールは事前にプログラムやフロー図など形式的な手法で記述しなければなりません。 これに対して “AI Agent” は、ユーザーが自然言語で目的を指示するだけで、あとは判断することができます。この差は非常に大きいものです。 冒頭に挙げた旅行の手配の例で考えてみましょう。 RPAを使った場合、フライト予約はあらかじめ設定された手順に従って行われます。航空会社のウェブサイトにアクセスし、日付や目的地を入力して検索、条件に合うフライトを選んで予約する、といったプロセスです。しかし、この手順は固定的で、予期せぬ事態には対応できません。例えば、フライトが満席の場合、RPAは次の手順に進めず、人間が条件を再設定する必要があります。 一方、AI Agentは異なります。フライトが満席の場合、自ら次の選択肢を探し、条件に合う別のフライトを提案します。それだけでなく、フライト変更が宿泊やレンタカー手配に影響する場合でも、関連タスクを再調整し、計画全体を柔軟に再構築できます。固定的な手順に縛られず、目標達成に向けて動けるのがAI Agentの特長です。 AI Agentの位置づけ このように、AI AgentはChatGPTの自然言語能力とRPAの自動実行の技術が融合したものと捉えることができます。対話型と自動実行型、自然言語とルールベースという2軸で整理すると以下のようになります。 このように、AI Agentは「自然言語で指示し、タスクを自動実行する」という点で、他の技術とは一線を画しています。 ―――― 今回は、本AI Agentコラムの第1回として「AI Agentとは?」を整理してみました。次回の第2回では、AI Agentがなぜいま、企業や研究者たちの注目を集めているのか、その背景を掘り下げていきます。ぜひご期待ください。 AIエージェントページへ 次の記事へ

  • AI Agent column4 | Arithmer

    AI Agent Column 4 2025.1.21 AI Agent 導入の難しさ 前回までのコラムでは、AI Agentの可能性と活用事例について紹介してきました。確かにAI Agentはさまざまな分野で期待されていますが、実際に業務に適用するとなると、いくつか課題があります。今回は、AI Agentを導入する際に直面する代表的な難しさについてお話しします。 ―――― AI Agentは非常に可能性に満ちたツールですが、活用するには越えなければならないいくつかのハードルがあります。具体的には、以下の5つの点で注意が必要です。 1. 不確実性への対処 前回のコラムでも触れたように、AI Agentはしばしば、業務の一部を自動化し、直接「実行」する役割を期待されます。例えば請求書の処理や顧客対応などのタスクです。しかし、AIの中核を成すLLM(大規模言語モデル)やDL(ディープラーニング)は、その性質上「確率的(stochastic)」、つまり出力が不確実で予測しにくいという特徴を持っているため、実行の場面では課題となります。 精度の問題: AIが100回中99回正しく動作しても、1回のミスが重大な結果を招く場面では使用が難しい場合があります。たとえば、請求書で一度でも誤った金額を計算すると、顧客の信頼を損なう可能性があります。 ハルシネーション: AIが存在しない情報を生成してしまうことがあります。たとえば、製品のマニュアルに載っていない解決方法をでっち上げる可能性もあります。 再現性の欠如: 同じ質問をしても、異なる回答が返ってくる場合があります。業務では、結果が一定であることが求められるため、この特性が問題となります。 このような不確実性は、AI Agentに「実行」を任せる上で大きな障壁となります。 2. ドメイン知識とのインテグレーション AI Agentは LLMの持つ汎用的な知識に基づいてタスクを処理することができます。たとえば、旅行の計画を立てたり、メールの文案を作成したりと、さまざまな用途に対応できます。これは、インターネット上の膨大なデータから学んでいるからです。しかし、ドメイン知識が必要な業務を AI Agentに行わせるのは、簡単ではありません。 ドメイン知識の必要な業務: 例えば医療記録を扱う業務では、LLMは一般的な医学知識は持っていますが、病院ごとに異なる記録形式や略語には対応できない場合があります。 また、自社サービスのサポートデスクでは、LLMは一般的なPC・OS・ネットワークなどに関する知識は持っていますが、自社サービス固有の技術情報が必要な問題には対応できない場合があります。 業務特有の知識を与える方法の一つとして、 RA G ( Retrieval-Augmented Generation ) という仕組みがあります。この仕組みでは、関連する情報を事前に収集しておくことで、それを利用してLLMの知識を補完することができます。しかし、このRAGも導入するだけで自動的に効果を発揮するものではありません。場合によっては、ドメイン知識に過剰に適合することで、もともと持っていた汎用知識・能力が損なわれてしまうこともあります。RAGを高精度で機能させるには、データの整理や適切な運用設計など、多くの手間と工夫が必要です。 AIの汎用性を保ちながらドメイン知識を補うのは非常に難しい課題です。 3. 適用業務の選定 AI Agentをうまく活用するには、効果のある業務を選定する必要があります。ここで重要なのは、AI Agentに「何を任せるか」だけでなく、「どのように業務を再設計するか」も合わせて考える必要があるということです。 前後の処理を統合した最適化: 例えば、書類審査の業務において、すでにOCR(光学文字認識)は導入済みで、新たにAI Agentに読み取った情報を基に審査を行わせたいとします。もちろん、既存のOCRの処理は残したまま、判定だけをAI Agentにやらせることは可能です。しかし、読み取りと判断を統合して AI Agentに実行させる方が全体の精度が向上することがあります。これは、AI Agentが「判断」に必要な情報を理解して、その情報の抽出にフォーカスして「読み取り」を行うことができるためです。 逆に、部分的な最適化にとどまると、せっかくのAI Agentのポテンシャルを十分に引き出せないことになります。 4. 継続的改善のための運用設計 AI Agentを導入して終わり、というわけにはいきません。最初から高い精度が出せることはそもそも稀ですし、たとえ導入当初はうまく機能したとしても、業務のデータや前提条件は時間とともに変化するため、次第に精度が低下することは避けられません。 継続的に精度を維持・向上させるためには以下のことを考える必要があります: 「正しい」データをどのように入手するか どのようにAI Agentに教えるか いつどのようにアップデートするか さらに、これらを無理なく実施できる運用が求められます。AI Agentの導入で得られるメリットより、運用の手間・コストがかかるようでは意味がありません。したがって上記のステップは低コストで、つまり自動もしくは半自動で実行できるような仕組みを含めて運用を設計する必要があります。 5. 導入是非の判断 ここまで述べた課題があるため、AI Agentの導入が本当にROI(投資対効果)を生むのかを事前に見極めるのは簡単ではありません。 業務ごとの特性の違い: ここまで述べた問題を解決する万能なソリューションは存在しません。解決にどれほどの労力が必要かは、業務の内容や状況に依存します。そのため業務内容の詳細を検討し、実際のデータを分析して初めて判断できる部分があります。 課題の相互依存: 例えば、2で挙げたドメイン知識のインテグレーションの解決方法によっては、1の不確実性も解消する場合もあれば、そうでない場合もあります。また、3で挙げた適用業務の再設計は、4の継続的改善のための運用設計にも直接影響を及ぼします。 これらの理由から、「AI Agentを導入したらどの程度の成果が得られるのか」を事前に正確に見積もることは非常に難しく現実的ではありません。 5つの「難しさ」に対するArithmerアプローチ このようにいざ実業務にAI Agentを適用しようとすると、現時点ではまだまだ難しい課題があるということをご理解いただけたかと思います。ただこれらの課題に対する有効なアプローチも存在します。難しさを理解した上で、適切なアプローチを採って、ステップを踏んでいくことで、十分克服することが可能です。 ここでは簡単にArithmerがお客様と共にとってきたアプローチの一例をご紹介します。 不確実性への対処: 確率的(Stochastic)なモデルと決定論的(Deterministic)なモデルを組み合わせることで、一貫性と説明可能性を確保 ドメイン知識とのインテグレーション: RAGを機能させるため、過去データを数理的に分析して暗黙知を明らかにし、業務に必要なデータを整理・最適化する仕組みを構築 適用業務の選定: 業務を分解し重要性や適合性をスコアリングして、適用範囲を明確化することで最適な業務フローを構築 継続的改善のための運用設計: モデルのパラメータ調整や柔軟なカスタマイズにより、業務の変化に対応可能な仕組みを整備 導入是非の判断: 小規模かつ段階的導入により初期投資のリスクを軽減し、モデルの透明性と説明可能性を重視することで、顧客が効果判断できる環境を提供 ―――― このようにAI Agentの導入には解決すべき課題が多くありますが、それぞれ有効なアプローチもあることを簡単にご紹介しました。 次回のコラムでは、これらのアプローチを実際にどのように適用し、業務改善につなげたのか、具体的な事例を交えてご紹介します。ぜひご期待ください! 前の記事へ AIエージェントページへ 次の記事へ

  • AI Agent column3 | Arithmer

    AI Agent Column 3 2025.1.14 AI Agentで何ができるのか? 明けましておめでとうございます。今年も昨年に続いてAI Agentの年になりそうですね! 昨年末のAI Agentコラムの第1回ではAI Agentとは何か、第2回ではなぜいま注目されるのかを紹介しました。そしてこの第3回では、AI Agentに実際に何ができるのか具体的に見ていきたいと思います。 ―――― 代表的な用途 前回のコラムで触れたように、AI Agentは技術の進化や環境の整備、ビジネスの期待のが高まりなどを背景に、様々な領域で活用が進められています。以下に、代表的な用途をいくつかご紹介します。 カスタマーサポート: AI Agentは、カスタマーサポート業務の自動化で顕著な成果を上げています。具体的には、顧客からの技術的な問題や製品の不具合に関する問い合わせに対し、AI Agentが自律的に対応し、問題の特定、解決策の提示、さらには必要に応じて専門スタッフへの切り分け、引継ぎなども行います。 事務作業: 定型的な事務作業を自動化し、業務効率を高めます。例えば、会議の日程調整や終了後の議事録作成を自動で行います。またメール対応も、これまでのやり取りの経緯や、先方の送付資料を要約し、回答案を生成することができます。日常的なタスクをAI Agentが代行することで、従業員がよりクリエイティブな仕事に集中することができます。 データ分析: AI Agentはデータ分析でも利用されています。例えば、マーケティング担当者が『今期売上が最も伸びた商品は何か?』と尋ねると、売上データを解析し商品別成長率を示します。続けて『その商品の売上が伸びた地域は?』と尋ねると、その商品の地域別成長率を示します。こうした対話的なプロセスで、ユーザーの意思決定を支援します。 ソフトウェア開発: AI Agentは、ソフトウェア開発においてコード生成やデバッグ支援、タスクの自動化などに利用されています。例えば、開発者が必要な機能を説明すると、それを基にサンプルコードを生成し、エラーが発生した場合にはエラーメッセージから修正案を提示することができます。また、テストケースの生成や実行の自動化を通じて、品質向上にも貢献しています。 マーケティングコンテンツ作成: SNS投稿やキャンペーン資料の作成を支援します。例えば、新商品の特長を入力すると、それを基にキャッチコピーや投稿文を生成します。また、ターゲット層の説明をもとにその層に訴求するデザイン案や画像の生成も可能です。これにより、マーケティング業務の負担を軽減し、かつ、迅速かつ効果的な施策を実行することができます。 教育: AI Agentはまた、教育分野における個別最適化学習にも使われています。例えば、学習者の進捗を分析し、苦手分野を特定して適切な練習問題を提案します。また、教員向けにはテスト採点や出席管理といった事務作業を自動化し、教育活動に集中できる環境を提供します。 バリエーション豊かなAI Agent このように、AI Agentとひとことで言っても、その役割や適用範囲は非常に幅広いものです。人間の意思決定や創造性を支援することに重きを置くものもあれば、人間の負担を減らすために自動実行に重きを置くものもあります。また、特定の業務に特化したAgentもあれば、幅広い分野で活用できる汎用型のAgentも存在します。 先に挙げた用途の例は、以下のように整理するとわかりやすいでしょう。 このように、AI Agentはさまざまな用途で活用が進んでいます。さらに、AI Agent自身の柔軟性の高さや、多様な試みが世界中で行われていることから、今後ますます広い領域に適用されていくことでしょう。 ―――― 今回はAI Agentの代表的な用途と、その幅広さについてご紹介しました。一方で、AI Agentはまだ万能ではありません。次回の第4回では、AI Agentを実際の業務に適用する際の難しさについてお話ししたいと思います。 ぜひご期待ください。 前の記事へ AIエージェントページへ 次の記事へ

  • AI Agent column6 | Arithmer

    AI Agent Column 6 2025.2.28 AI Agent導入の進め方 前回のコラムでは、AI Agent導入の一つの事例を紹介しました。では、これからAI Agentを導入しようと考えたとき、どこから始めるべきでしょうか? 本稿では、AI Agent導入する際に必要となる4つのステップを紹介し、どのように進めるべきかを整理します。 ―――― AI Agent 導入前の4ステップ AI Agentは従来のAIに加えて新たな難しさがあります。そのため、まずはAI Agentを「理解」することから始めることが重要です。その上で、適用する業務を「選定」し、運用を含めた to-beを「設計」し、そのto-beに向けたステップを「計画」します。 (1) 理解 (Understand) : AI Agentの特性を知り、できること・できないことの感覚を養う (2) 選定 (Prioritize) : AI Agentの強みを活かせる業務を見極める (3) 設計 (Design) : AI Agentの業務への組み込み方のto-beを設計する (4) 計画 (Plan) : 設計で描いたto-beの実現に向けた具体的なステップを計画する (1) 理解 (Understand) これまですでに AIの導入を経験している方の中には、「AI AgentもAIの一種だ」と考える方もいらっしゃるかもしれません。しかし、AI Agentは従来のAIより格段に便利になった部分もあり、だからこそ新たな難しさも見えてきています。まずは十分な理解が必要です。 AI Agentは、技術そのものが複合的 で、従来のAIよりも構造がはるかに複雑です。 従来のAIは多くの場合、「教師あり学習」を用いた回帰や分類の問題として定式化し、データを集め、学習・評価し、適用する、という流れで進めることができました。しかし、AI Agentは 生成AI・タスク分解・自律実行・外部ツール連携 など、複数の技術が組み合わさるため、単体のモデルとして扱うことができません。 また、AI Agentのメリットの「自律性」を享受するために、多くの場合LLMの能力を活用することになります。LLMは自然言語を扱い、確率的に動作し、状況に応じて動的に判断するため、従来のシステムのように明確なルールを定めて設計することが難しくなります。事前にすべての挙動を想定できるわけではなく、「どう運用すれば意図通りに動かせるのか?」を深く理解しないまま導入を進めると、想定通りに進まず、行き詰ることになります。 このようにAI Agentを導入する際には、まず 「何ができるのか」「何ができないのか」「どう動くのか」 について感覚を養うことが重要です。 (2) 選定 (Prioritize) AI Agentは万能ではなく、得意不得意があります。適用する業務によって効果が大きく異なるため、業務との相性を見極めることが重要です。 従来のAIは、「十分なデータが揃っていて、明確な判断基準がある業務」なら適用しやすい傾向がありました。しかし、AI Agent は技術自体も複合的であり、タスク分解や実行まで担うため、ある業務に適用したときに、うまくいくかどうかを見極めるのがより難しいと言えます。 適用業務を選定する際には、次の3つの軸 で評価するのが有効です。 ビジネスインパクト : 導入による業務改善の効果が大きく、企業戦略とも合致するか 技術的な実現可能性 : 必要なデータやシステム環境が整い、実装が可能か 業務適用の実現可能性 : 法的・倫理的な問題なく、利用者・関係者にも受容されるか これらの視点を押さえ、実現可能性が高く、導入の効果が見込める業務から適用することが重要です。 (3) 設計 (Design) AI Agentは現時点ではまだ、箱から出してそのまま業務に適用できるようなパッケージ製品にはなっていません。実業務に組み込むには、次のような課題に対処する必要があります。 不確実な挙動 AIには確率的 (stochastic) な性質がつきものです。従来のAIでは、人が「判断」を担うのが定石でしたが、AI Agentの場合は「判断」も自律的に行うことが期待されています。確率的機構、決定論的 (deterministic) 機構、人の介入のバランスを設計する必要があります。 知識の不足 LLMは膨大な公開情報から学習することで、豊富な知識を獲得しました。しかし、多くの業務は現場の暗黙知に依存しており、LLMもそのままでは上手く対処することができません。これは短期的に解決できるものではなく、長期的な知識獲得の設計が不可欠です。 要件・環境の変化 業務要件やデータ、外部環境は常に変化し続けます。導入時に最適な設計をするだけでは、そのパフォーマンスを持続することはできません。業務で継続的に利用するには、変化に適応できる仕組みをあらかじめ組み込む必要があります。 これらの課題は、システム設計だけで解決できるものではありません。システムと運用の両面を統合的に設計するアプローチが求められます。 (4) 計画 (Plan) AI Agentの適用業務を決めto-beのシステム・運用の形が描けたら、そのto-beの実現に向けたステップを計画する必要があります。従来のITやAIの導入と共通の部分もありますが、AI Agentならではの注意点もあります。 不完全であることを前提に計画する AI Agentの動作には確率的な要素が含まれるため、導入前にすべてのケースを想定することは不可能です。最初から「完璧な状態」を目指すのではなく、スモールスタートし、フィードバックを活用しながら適応させていくことが重要です。 リスクの取り方を計画する 不完全なAI Agentにすべてを任せるのは難しいため、最初は範囲を限定し、段階的に広げるのが現実的です。 ただし、一度「人が判断」する仮運用を始めると、後から変えにくくなります。リスクとリターンを総合的に評価し、本運用への移行基準を事前に定めることが重要です。 問題発生時の対応を計画する AI Agentは確率的で複合的な技術のため、問題発生時の原因特定や対処が非常に困難です。未知の問題が起こる前提で、柔軟に対応できる環境を整える必要があります。また、問題発生はAI Agentにとって貴重な学習の機会でもあります。問題の解決だけでなく、継続的改善につなげられることが重要です。 ―――― まずは全体を4ステップに整理してみました。次回は、(1) の「理解」についてもう少し詳しく見ていきたいと思います。 お楽しみに! 前の記事へ AIエージェントページへ 次の記事へ

  • AI Agent column2 | Arithmer

    AI Agent Column 2 2024.12.26 なぜいま、注目されるのか? AI Agentコラムの第1回ではAI Agentというコンセプトそのものをご紹介しました。第2回の本稿では、そのAI Agentがなぜいま、これほど注目を集めているのか、その要因を掘り下げてみたいと思います。 ―――― 3つの要因 前回整理した通り、AI Agentは「自然言語で指示し、タスクを自動実行する」という点で、従来の技術とは一線を画する存在です。では、このAI Agentがなぜいま、これほど注目を集めているのでしょうか? その背景には、次の3つの要因が挙げられます。 1. 技術のブレークスルー AI Agentが注目を高めた最大の要因は、大規模言語モデル (LLM) の飛躍的な進化です。 特に2022年11月にリリースされたGPT-3.5は、対話型アプリのChatGPTと共に普及し、LLMの可能性を人々に知らしめました。さらに2023年3月のGPT-4の登場により、LLMは単にテキストや情報を生成するだけでなく、タスクを理解し、自律的に遂行する「思考力」に近いものを獲得していることが明らかになりました。 例えば、GPT-4は旅行の計画を立てる際に、フライト、宿、食事の手配が必要であることなどを理解して、それぞれのタスクに分解することができます。 従来のAIは事前にルールを与えられた範囲でしか動けませんでしたが、LLMは自然言語での指示を受け、状況に応じた判断を柔軟に行えるようになったのです。これが、AIが「行動する」存在へと進化するブレークスルーとなりました。 2. 環境の整備 次に、このブレークスルーをビジネス活用へとつなげる研究開発の「環境」が整備されたことが挙げられます。 OpenAIなどによるLLM APIの公開や、AWS、Azure、GCPといったクラウドインフラの普及により、個人や企業がAI技術を手軽に利用し、試行錯誤を重ねることが可能になりました。また、LangChainやAuto-GPTといったフレームワークの登場により、LLMと他のツールやシステムを組み合わせたAI Agentのプロトタイプを簡単に構築できるようになってきています。これらの環境・エコシステムの普及が、研究者や開発者の創意工夫を後押しし、AI Agentの実用化を加速させています。 3. ビジネスの期待の高まり 技術と環境が整ったことで、ビジネスの現場でもAI Agentへの期待が急速に高まりました。多くの企業が導入に向けた具体的な検討や計画に着手し、またMicrosoftやSalesforceといった大手テクノロジーベンダーも相次いでAI Agent関連の新機能やサービスを発表しています。これらの動きにより、AI Agentを「未来の技術」から「現実のビジネスチャンス」へと変わり、さらに多くの注目を集めるきっかけとなりました。 これらの要因が重なり、AI Agentは今、生成AIを超える「次なる革新」として注目を集めています。かつてインターネットやスマートフォンが世界を変えたように、AI Agentも私たちの働き方や日常に劇的な変化をもたらすものとなるでしょう。 ―――― 次回の第3回では、実際のところAI Agentで一体何ができるのかを整理してみたいと思います。ぜひご期待ください。 前の記事へ AIエージェントページへ 次の記事へ

  • リテールAI | 慢性的な人手不足を数学のチカラでサポート

    パーソナライズされたAIレコメンド機能や、スマホカメラを使用した高精度な自動採寸など、小売りの現場で活用できるAIを提供しています。 Retail AI 慢性的な人手不足の小売りの現場で AIがさまざまな役割を補完 お問い合わせはこちら パーソナライズされたAIレコメンド機能や、スマホカメラを使用した高精度3次元採寸など、小売りの現場で活用できるAIを提供しています。 リテールAI こんなお悩みありませんか? 商品の発注業務に人手を割かれて 接客がおろそかになる オーダーメイドの採寸技術が 熟練者から継承できない お客様の要望にお応えできるプロフェッショナル人材が不足している リテールAIはそんなあなたの課題を解決します リテールAIの特長 蓄積された実績とSNSトレンドを 組み合わせて自動発注 過去の販売実績のデータだけではなく、SNSでの今のトレンドも加味した上で販売予測を立てて発注を行います。 専門の採寸技術者は不要で 店員の負担軽減が可能 店舗での採寸業務を自動採寸に置き換えることにより、店員の負荷軽減や、店員配置の最適化に貢献します。 数万のデータから 顧客のニーズに合った商材をレコメンド 顧客情報や商談記録などから、ニーズやシーズをAIが集約し、顧客に合わせた情報や解決策などを提供することができます。 ※画像はイメージです トップテーラーの技術を スマホで再現 トップテーラーの技術を学習したAIエンジンが、身長、体重、年齢と写真2枚だけで指定の採寸箇所の計算結果を出力します。カジュアル、ビジネスだけでなく、さまざまな採寸に応用できます。 INPUT 身長 体重 年齢 写真2枚 AIシステム 自動採寸AIシステム OUTPUT 指定箇所の採寸結果 ビッグデータ×AIアルゴリズム 個人の嗜好に合わせたレコメンド 3つのAIエンジン「AIデリバリー」「AIコーディネイト」「セレクトレンズ」が、コンシェルジュの行う接客と同じように、個々のユーザーに寄り添ったベストなレコメンデーション体験を提供します。 INPUT 顧客データ 採寸データ SNS自動収集データ AIシステム AIデリバリー AIコーディネイト セレクトレンズ OUTPUT おすすめ商品の提案 ※画像はイメージです ※画像はイメージです 顧客のニーズとシーズをマッチング 最適化AIレコメンドシステム 銀行内で分散管理されている、顧客の「企業情報」「財務データ」「商談記録」などを集約し独自のDBを構築。このDBを基に販路拡大や仕入れ先・外注先の確保など、顧客のニーズとシーズを組み合わせることで、最適なマッチングを提案します。 INPUT 企業情報 財務データ 商談記録 AIシステム 最適化AIレコメンドシステム OUTPUT 企業同士のマッチング候補 株式会社ヤマダヤ様 身長・体重・年齢と写真3枚の 撮影でオーダーメイドの 採寸が完了 女性向け自動採寸AIエンジン より詳しく 導入事例 株式会社コナカ様<SUIT SELECT> スマホ上で店頭での洋服選びの 楽しみを完全再現世界初 「完全パーソナライズド AIレコメンデーション」 より詳しく 徳島大正銀行様 保有している情報資産 (ビッグデータ)を 有効活用 経営課題AI支援システムを導入 より詳しく 国立大学法人鳴門教育大学様 学生の自己伸長型の学び促進。教員に求められる資質能力を可視化。「教員養成学修可視化システム」 より詳しく 株式会社ヤマダヤ様 ECサイト上で試着イメージを提供 リアルとデジタルでのシームレスな購入体験 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら

  • 運転AI | 数学とAIで社会課題を解決するArithmer

    AI技術×シミュレーションで圧倒的に速い解析時間を実現します。シミュレーションを行うには、知識や膨大な試行回数が必要になり、結果が出るまで数ヶ月を要することがあります。 私たちの流体予測AIシステムでは、これら課題を解決し、活用場面を広げていきます。 運転AI Drive Support AI 運転支援や空間把握、モニタリングなど、動画解析を日常生活の基盤に 車と人の安心・安全をサポートします。車載カメラ映像の解析による注意喚起や、スマートフォンアプリによるリアルタイムアラートなど、目的や環境に応じたシステムを利用できます。 お問い合わせはこちら こんなお悩みありませんか? 工場内カートや大型トラックの 巻き込みによる接触事故 交通事故(人身事故)発生時の 社会的影響 熟練ドライバーの不足 運転AIはそんなあなたの課題 を解決します 運 転AIの特長 動画解析技術を用いて 危険状態を検知する 車体に取り付けたカメラで車両周辺を監視車両側面や後方を監視し、障害物を検知すると注意を喚起します。 必要最小限のカメラだけで 車体の移動軌跡を測定し 障害物等への接触リスクを判定 カメラの設置台数を最小限にすることでコストの増加を抑え、AI画像解析により車両と人などとの接触リスクを低減します。 若手ドライバーでも安心・安全に運行が可能 危険を察知したらアラートを発信するため、運転経験が少ないドライバーでも安心して運行することができます。 ※画像はイメージです 自動運転システムにおける 予兆保全・異常検知 AGVやフォークリフトなどのシステムと合わせて実装することにより、危険エリアを自動的に調整・監視。接触事故を未然に防ぎます。移動に合わせて監視エリアを自動的に調整します。 INPUT 自動運転シス テムの動画像 AIシステム 自動運転システムとの組み合わせ OUTPUT 異常箇所の通知 安全運転支援システム 飛び出しや巻き込みが起きやすい場所をAIで学習し、事故を抑止します。また、車間距離を感知し、未然に追突事故を抑止します。 INPUT ドライブレコーダーの撮影データ AIシステム 車や二輪車、人、 信号、標識などを 検知 独自のデータを 元にした危険 箇所 の特定 OUTPUT ドライバーへの注意喚起 危険箇所の事前通知 ※画像はイメージです ※画像はイメージです 農業における自動運転開発 農業における人手不足問題を解消し、高い生産性を実現します。 INPUT 準天候衛星シス テム「みちびき」 による現在地の 特定 AIシステム あらかじめ 作成 された 地図デー タ から最適 ルー トを生成 OUTPUT 倉庫から田畑へ 移動 植え付け/収穫 の自動化 導入事例 ※画像はイメージです トヨタ自動車株式会社様 工場内運搬カートの後方安全に関する特許をトヨタ自動車と共同で出願 より詳しく 導入までの流れ ヒアリング 現状についてヒアリングを行い、弊社のソリューションで課題解決できるか確認致します。 要件定義/本契約 カメラの仕様、1日あたりの撮影回数・カメラ台数など運用に必要な条件を確認。その後、見積提出・本契約になります。 システム構築 要件定義に基づきシステム構築を行います。 運用開始 構築したシステムを提供し、お客様にて運用を開始いただきます。安定稼働を目指し、弊社にてアフターサポートを行います。 Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問合せください お問い合わせ

bottom of page