Search
検索
55件の検索結果が見つかりました
- AI Agent column10 | Arithmer
AI Agent Column 10 2025.12.10 AI Agentコラム (10): AI Agent導入 step4 ”計画“ AI Agent導入の4ステップ「理解」「選定」「設計」「計画」。前回(第9回)はステップ3「設計」として、AI Agentを業務に組み込む「to-be」の描き方についてお話しました。 さて、いよいよ最終ステップとなる今回は「(4) 計画 (Plan)」です。設計で描いたto-beの実現に向けた具体的なステップを計画する際に、どのようなことに留意するべきかお話したいと思います。 ―――― AI Agent ならではの注意点 第一に、中核となるLLM(大規模言語モデル)そのものが持つ「御しにくさ」 です。 LLMは確率的に動作するため、同じ指示でも応答が揺らぐことがあり、その思考プロセスは完全には透明ではありません。また、膨大な知識を持つ一方で、特定の業務に必要な専門知識や暗黙知は不足していたり、時には事実に基づかない情報(ハルシネーション)を生成したりすることもあります。さらに、その能力を最大限に引き出すための最適な指示(プロンプト)を見つけること自体が、試行錯誤を要する複雑な作業です。この「御しにくさ」があるため、AI Agentの挙動を完全に予測し、制御することは本質的に困難なのです。 第二に、AI Agentには、単に応答を生成するだけでなく、自律的に「実行を任せる」ことによる特有のリスク が伴う点です。AI Agent が外部ツールと連携したり、システムを操作したり、あるいは顧客と直接やり取りしたりする場合、その「御しにくい」挙動が、ビジネス上あるいは社会的に無視できない影響を直接的に及ぼす可能性があります。従来のAI以上に、そのアクションの結果に対する責任と、安全性をどう担保するかが問われます。 この「LLMの御しにくさ 」と「実行を任せるリスク 」という 2つの大きな特性があるからこそ、事前に全てを完璧に計画することが難しく、次のセクションで述べるような、不確実性を前提とし、リスクを管理しながら、実践を通じて学習・適応していくための特別な計画上の配慮が不可欠となります。 1. 不完全であることを前提に計画する まず大前提として、AI Agentは導入初期において「不完全」であることを受け入れなければなりません。LLM の確率的な性質や学習データの限界、そして私たちがまだ知らない未知の挙動などにより、事前にすべてのケースを想定し、完璧な準備を整えることは不可能です。 したがって、計画においては「完璧な状態でのリリース」をゴールとするのではなく、「不完全な状態から安全に学び、成長させていくプロセス」そのものをデザインする必要があります。 そのための具体的なアプローチが「スモールスタート」です。これは、リスクを最小限に抑えつつ、早期に現実世界でのフィードバックを得て学習するための極めて有効な戦略です。計画段階で、「どこまで小さく始めるか」を具体的に定義します。 意図的にリスクを限定した「練習環境」を計画的に用意し、その中で AI Agentを動かし、挙動を観察し、改善していく。そして、スモールスタートから得られる様々なフィードバック(AIの挙動、ユーザーの声、業務影響など)を意図的に収集し、分析し、それを次のイテレーション(反復)の計画に迅速に反映させるループを計画に組み込むことが重要です。 従来のウォーターフォール型計画のように、一度立てた計画に固執するのではなく、実践からの学びに基づいて計画自体を柔軟に見直し、適応させていく。このアジャイル的な進め方こそが、不完全で予測不能な AI Agentと共に歩むための現実的なアプローチです。 2. リスクの取り方を計画する AI Agentの自律性を本当に活用するには、ある程度の「リスク」を取って実行を任せる場面も出てきます。しかし、最初からすべてを委ねるのは危険です。そこで重要になるのが、リスクをコントロールしながら段階的に適用範囲や権限を広げていく計画です。 計画段階で、AI Agentに任せる機能、アクセスできるデータ、実行可能なアクションなどを、どのようにステップを踏んで拡大していくかのロードマップを具体的に描きましょう。そして最も重要なのは、各ステップにおいて「許容できるリスクはどこまでか」「何を達成できれば次のステップに進めるのか」という客観的な基準(例えば、特定のタスクにおける成功率、エラー発生頻度、人間の修正頻度など)を事前に明確に定義し、関係者間で合意しておくことです。 特に、導入初期に安全策として設けることが多い「人間による判断・介入」プロセスは、あくまで AI Agentを育成するための「補助輪」と捉える視点が大切です。その補助輪をいつ、どのような状態になったら取り外すのか、その移行プロセスと判断基準を計画に明記しておかないと、人間によるチェックが恒久化し、結果的に AI Agentの自律性を十分に引き出せないままになってしまう可能性があります。必要なリスクは取り、不要なリスクは取らない、長期視点での合理的な判断が求められます。 3. 問題発生時の対応を計画する AI Agent の導入計画においては、残念ながら問題が起こることを避けられない前提として捉える必要があります。その確率的で複合的な性質上、予期せぬ挙動やエラー、あるいは期待通りの結果が出ないといった事態は必ず発生し得ます。重要なのは、発生をゼロにすることではなく、発生した場合にいかに迅速かつ柔軟に対応し、さらにそれを次に活かすかを計画しておくことです。 計画には、まず問題を早期に検知するためのモニタリング体制(ログ収集・分析、異常検知アラートなど)の整備を含めるべきです。AI Agent は原因特定が難しい場合も多いため、迅速な状況把握と影響範囲の特定、そして必要に応じた暫定的な対処(関連機能の一時停止、人間による代替処理など)と、その後の恒久的な対策に繋げるプロセスを定めておくことが有効です。 さらに強調したいのは、発生した問題を単なる「障害」として処理するのではなく、AI Agentと組織全体の「学習機会」と捉える視点です。問題発生時の状況、原因(推定でも構いません)、対処内容とその結果といった情報を構造化されたデータとして記録・蓄積する仕組みを作りましょう。この「失敗からの学び」を分析し、AI Agent 自体の改善や、運用プロセスの見直しに繋げていくフィードバックループを回すこと。これこそが、AI Agentを継続的に進化させるエンジンになります。 ―――― 今回は、導入の最後のステップ「計画」についてお話ししました。 そして本コラム『AI Agentコラム』は、この第10回をもちまして最終回となります。 長きにわたりご愛読いただき、誠にありがとうございました。 この連載では、まず AI Agentとは何かという基本的な概念から始め、その適用範囲、課題、実際のユースケースをご紹介しました。第 6回からは導入プロセスを「理解」「選定」「設計」「計画」という4つのステップに分けて、それぞれの実践面での注意点を掘り下げてまいりました。 私たちが一貫してお伝えしたかったのは、AI Agentが秘める大きな可能性と、それに伴う固有の難しさ、特にその「不確実性」とどう向き合うか、という点です。 本コラムでご紹介した考え方やアプローチが、皆様それぞれの挑戦におけるヒントとなれば大変嬉しく思います。AI Agentを取り巻く世界は、これからも急速に変化していくでしょう。私たち Arithmerが、その道のりを共に考え、歩むパートナーとして、少しでもお役に立てることがあれば幸いです。 改めまして、全10回の連載にお付き合いいただきましたこと、心より感謝申し上げます。 前の記事へ AIエージェントページへ
- リテールAI | 慢性的な人手不足を数学のチカラでサポート
パーソナライズされたAIレコメンド機能や、スマホカメラを使用した高精度な自動採寸など、小売りの現場で活用できるAIを提供しています。 Retail AI 慢性的な人手不足の小売りの現場で AIがさまざまな役割を補完 お問い合わせはこちら パーソナライズされたAIレコメンド機能や、スマホカメラを使用した高精度3次元採寸など、小売りの現場で活用できるAIを提供しています。 リテールAI こんなお悩みありませんか? 商品の発注業務に人手を割かれて 接客がおろそかになる オーダーメイドの採寸技術が 熟練者から継承できない お客様の要望にお応えできるプロフェッショナル人材が不足している リテールAIはそんなあなたの課題を解決します リテールAIの特長 蓄積された実績とSNSトレンドを 組み合わせて自動発注 過去の販売実績のデータだけではなく、SNSでの今のトレンドも加味した上で販売予測を立てて発注を行います。 専門の採寸技術者は不要で 店員の負担軽減が可能 店舗での採寸業務を自動採寸に置き換えることにより、店員の負荷軽減や、店員配置の最適化に貢献します。 数万のデータから 顧客のニーズに合った商材をレコメンド 顧客情報や商談記録などから、ニーズやシーズをAIが集約し、顧客に合わせた情報や解決策などを提供することができます。 ※画像はイメージです トップテーラーの技術を スマホで再現 トップテーラーの技術を学習したAIエンジンが、身長、体重、年齢と写真2枚だけで指定の採寸箇所の計算結果を出力します。カジュアル、ビジネスだけでなく、さまざまな採寸に応用できます。 INPUT 身長 体重 年齢 写真2枚 AIシステム 自動採寸AIシステム OUTPUT 指定箇所の採寸結果 ビッグデータ×AIアルゴリズム 個人の嗜好に合わせたレコメンド 3つのAIエンジン「AIデリバリー」「AIコーディネイト」「セレクトレンズ」が、コンシェルジュの行う接客と同じように、個々のユーザーに寄り添ったベストなレコメンデーション体験を提供します。 INPUT 顧客データ 採寸データ SNS自動収集データ AIシステム AIデリバリー AIコーディネイト セレクトレンズ OUTPUT おすすめ商品の提案 ※画像はイメージです ※画像はイメージです 顧客のニーズとシーズをマッチング 最適化AIレコメンドシステム 銀行内で分散管理されている、顧客の「企業情報」「財務データ」「商談記録」などを集約し独自のDBを構築。このDBを基に販路拡大や仕入れ先・外注先の確保など、顧客のニーズとシーズを組み合わせることで、最適なマッチングを提案します。 INPUT 企業情報 財務データ 商談記録 AIシステム 最適化AIレコメンドシステム OUTPUT 企業同士のマッチング候補 株式会社ヤマダヤ様 身長・体重・年齢と写真3枚の 撮影でオーダーメイドの 採寸が完了 女性向け自動採寸AIエンジン より詳しく 導入事例 株式会社コナカ様<SUIT SELECT> スマホ上で店頭での洋服選びの 楽しみを完全再現世界初 「完全パーソナライズド AIレコメンデーション」 より詳しく 徳島大正銀行様 保有している情報資産 (ビッグデータ)を 有効活用 経営課題AI支援システムを導入 より詳しく 国立大学法人鳴門教育大学様 学生の自己伸長型の学び促進。教員に求められる資質能力を可視化。「教員養成学修可視化システム」 より詳しく 株式会社ヤマダヤ様 ECサイト上で試着イメージを提供 リアルとデジタルでのシームレスな購入体験 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら
- Arithmer | Privacy
Arithmer株式会社はプライバシーマークを取得しております。 Privacy プライバシーマーク Arithmer株式会社はプライバシーマークを取得しております。 証明書はこちら 事務所 Arithmer 株式会社 事業所 東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 認証機関名 一般財団法人日本データ通信協会 認証登録番号 第21004668(03)号 有効期限日 2024年8月17日~2026年8月16日
- Arithmer × NEC様|本人確認OCR
本人確認書類OCRシステムは様々なプラットフォーム対応はもちろん、高速かつ確実な「本人確認」の実現をサポートします。Arithmer OCR手書き読み取り技術により、免許証裏面や在留許可証の住所変更にも対応しています。 日本電気株式会社様 × Arithmer NECとArithmerの協業で マイナンバー認証サービスの推進とeKYC課題の解決へ × マイナンバー認証の重要性がますます高まる中、NECとArithmerは協力して、マイナンバー認証サービスの推進とeKYCにおける課題解決に向けて取り組んでいます。 従来の課題 従来の本人確認書類OCRは、撮影条件による制約や文字認識精度の低さから、導入後、期待していたほど人による確認作業の手間が減らないという不満がありました。 また、最近では個人情報の流出を防止する仕組みも求められています。 NECの顔照合技術とArithmerのOCR技術により、 窓口の煩雑な業務を大幅に軽減 利便性の向上が期待されるマイナンバーカードの使用に対し、行政機関におけるマイナンバーの制度活用と企業の制度対応に高い専門性を発揮するNECと協業し、AI・ICTなどの技術応用に力を注ぐ取り組みを進めました。 【ArithmerOCRの特長】 DeepLearningを活用した画像認識技術 ArithmerOCRは、DeepLearningを活用した高精度な画像認識技術を用いて照合番号B(14桁:券面に記載された生年月日6桁+有効期限西暦部分4桁+セキュリティコード4桁)を読み取り、入力ミスによるICカードロックを防止、窓口混雑の軽減に貢献します。 安全性の向上 一般的なOCRは、外部サーバーへ券面画像を送信して処理を行います。 ArithmerOCRでは、スマートフォン内で処理を完結するため、券面画像を外部へ送信することなく(※)個人情報を保護します。 【顔照合技術とDigital KYCの連携】 NECの顔照合技術とDigital KYCとの連携により、スマートフォン内で顔写真の対比を行い、前述同様に本人確認書類画像の外部送信を不要(※)とすることでセキュリティリスクを低減します。 ※認証後は確証としてサーバーに送る必要があります。 ArithmerOCR 技術紹介 【さまざまなプラットフォームに対応】 ArithmerOCRは、さまざまなプラットフォームで利用可能であり、高速かつ確実な「本人確認」をサポートします。 スマホライブラリーの例 撮影 Input 本人確認書類 運転免許証/マイナンバーカード 在留カード/パスポート 独自のモデル量子化技術により スマホ内で処理を完結 Output テキストデータ 名前:XXX 住所:YYY 番号:ZZZ データ 本人情報データ ベースクラウドor オンプレサーバ WebAPIの例 Input 画像入力 画像アップロード Output 結果表示 名前:XXX 住所:YYY 番号:ZZZ 結果出力 サービス提供会社 前処理 ArithmerOCR リクエスト 後処理 画像のOCR リクエスト OCR結果返却 大規模ネットワークによる推論 API ArithmerのAI OCRは特許を取得しています 特許6590355 手書きOCRの学習モデル生成装置 特許6804074 顧客先内部学習プログラム 特許6820578 活字文字列認識装置 特許6896260 レイアウト解析装置 特許7086361 帳票情報生成装置 以下は特許出願中です 特願2020-551133 帳票レイアウト解析装置 特願2021-575740 活字文字認識装置 特願2020-119790 文字列認識装置 特願2020-146682 全般技術 特願2020-181945 初期データ登録 プロジェクト一覧へ ソリューションのお問合せはこちら
- AI Agent column5 | Arithmer
AI Agent Column 5 2025.1.30 AI Agent導入の一例 これまでAI Agentの特徴やできることについて解説してきましたが、実際にそれを活用できるようになるまでのイメージがまだ付いていないという方もいらっしゃるかもしれません。そこで今回は、ある会社様に物品輸送を最適化するシステムを導入した時の経験談を書きたいと思います。 その会社様は当時、ある部門が抱える大きな業務において属人的な作業が多く、効率化が求められていました。 その効率化が求められていた業務を簡単に説明すると以下のような流れです: ①集められた情報の精査(不備の確認など) ②条件に基づく交渉 ③複数の選択肢から 「最適な」サービスを選定 最初にこの課題について相談を受けた時点では、その会社様もArithmerも具体的にどのようなデータを入力し、どのような結果を出力するシステムが必要なのか、あるべき姿をまだ掴めていない状況でした。 そこで、まずはコンサルティング的なアプローチで、データの活用方法について先方と議論することからプロジェクトをスタートしました。過去のデータをお借りし、数理的な分析を行うことで、業務の中で暗黙知となっていた重要なポイントを明確化しました。このプロセスは、AIエージェントの文脈で言うと、RAGに必要なデータを選別し、効果的に活用するための基盤を整備する作業です。 次にシステム開発を進めるにあたり、対象とする機能の範囲を絞ることが重要となります。今回のケースでは、上記①〜③に対応する機能のスコープを次のように設定しました。 ①初期段階のデータ精査をシステムで自動化 ②交渉については自動化はせず、交渉のための材料を提供する機能を設ける ③最終的な意思決定は人が行うが、その支援のためにシステムが「レコメンド」をする ここで「レコメンド」とは、入力されたデータを総合的に分析し、その結果をもとに選択肢を比較することを指します。条件が理想的に揃っている場合(例えば、コストが低く、スピードが早く、安全性が高いなど)を最適な選択肢とし、それとは対極の条件を低評価とします。各選択肢には多くの数値データやテキストデータが含まれています。このため、複数の選択肢を分析・比較する際の情報量は非常に膨大になります。従ってこのプロジェクトの中核は、この膨大な情報をいかに効率的に処理し、適切な評価を行う仕組みを実現するかという点でした。 案件ごとにモデルを柔軟に構築・調整できることは、Arithmerの大きな強みです。今回のケースでは、出力されるレコメンドに説明可能性が求められたため、確率論的(Stochastic)なアプローチではなく、決定論的(Deterministic)なモデルを採用しました。これにより、各条件がバランスよく反映されるパラメータ設定を行い、実用性の高いシステムを提供することができました(もちろん、他の案件では確率論的手法や両者を組み合わせたハイブリッドアルゴリズムが有効となる場合もあります)。 現在、このシステムは会社様に継続的にご利用いただいており、大変嬉しい限りです。また、近年のAI技術の進歩により、当初は人が担っていた交渉業務の自動化も実現可能な段階に近づいています。私たちとしても、このシステムのさらなる発展が非常に楽しみであり、引き続き改良を重ねていきたいと考えています。 ―――― 次回は、これから AI Agent の導入を検討しようという方々に向けて、検討すべきことやそのステップについて整理していきたいと思います。お楽しみに! 前の記事へ AIエージェントページへ 次の記事へ
- AI Agent column3 | Arithmer
AI Agent Column 3 2025.1.14 AI Agentで何ができるのか? 明けましておめでとうございます。今年も昨年に続いてAI Agentの年になりそうですね! 昨年末のAI Agentコラムの第1回ではAI Agentとは何か、第2回ではなぜいま注目されるのかを紹介しました。そしてこの第3回では、AI Agentに実際に何ができるのか具体的に見ていきたいと思います。 ―――― 代表的な用途 前回のコラムで触れたように、AI Agentは技術の進化や環境の整備、ビジネスの期待のが高まりなどを背景に、様々な領域で活用が進められています。以下に、代表的な用途をいくつかご紹介します。 カスタマーサポート: AI Agentは、カスタマーサポート業務の自動化で顕著な成果を上げています。具体的には、顧客からの技術的な問題や製品の不具合に関する問い合わせに対し、AI Agentが自律的に対応し、問題の特定、解決策の提示、さらには必要に応じて専門スタッフへの切り分け、引継ぎなども行います。 事務作業: 定型的な事務作業を自動化し、業務効率を高めます。例えば、会議の日程調整や終了後の議事録作成を自動で行います。またメール対応も、これまでのやり取りの経緯や、先方の送付資料を要約し、回答案を生成することができます。日常的なタスクをAI Agentが代行することで、従業員がよりクリエイティブな仕事に集中することができます。 データ分析: AI Agentはデータ分析でも利用されています。例えば、マーケティング担当者が『今期売上が最も伸びた商品は何か?』と尋ねると、売上データを解析し商品別成長率を示します。続けて『その商品の売上が伸びた地域は?』と尋ねると、その商品の地域別成長率を示します。こうした対話的なプロセスで、ユーザーの意思決定を支援します。 ソフトウェア開発: AI Agentは、ソフトウェア開発においてコード生成やデバッグ支援、タスクの自動化などに利用されています。例えば、開発者が必要な機能を説明すると、それを基にサンプルコードを生成し、エラーが発生した場合にはエラーメッセージから修正案を提示することができます。また、テストケースの生成や実行の自動化を通じて、品質向上にも貢献しています。 マーケティングコンテンツ作成: SNS投稿やキャンペーン資料の作成を支援します。例えば、新商品の特長を入力すると、それを基にキャッチコピーや投稿文を生成します。また、ターゲット層の説明をもとにその層に訴求するデザイン案や画像の生成も可能です。これにより、マーケティング業務の負担を軽減し、かつ、迅速かつ効果的な施策を実行することができます。 教育: AI Agentはまた、教育分野における個別最適化学習にも使われています。例えば、学習者の進捗を分析し、苦手分野を特定して適切な練習問題を提案します。また、教員向けにはテスト採点や出席管理といった事務作業を自動化し、教育活動に集中できる環境を提供します。 バリエーション豊かなAI Agent このように、AI Agentとひとことで言っても、その役割や適用範囲は非常に幅広いものです。人間の意思決定や創造性を支援することに重きを置くものもあれば、人間の負担を減らすために自動実行に重きを置くものもあります。また、特定の業務に特化したAgentもあれば、幅広い分野で活用できる汎用型のAgentも存在します。 先に挙げた用途の例は、以下のように整理するとわかりやすいでしょう。 このように、AI Agentはさまざまな用途で活用が進んでいます。さらに、AI Agent自身の柔軟性の高さや、多様な試みが世界中で行われていることから、今後ますます広い領域に適用されていくことでしょう。 ―――― 今回はAI Agentの代表的な用途と、その幅広さについてご紹介しました。一方で、AI Agentはまだ万能ではありません。次回の第4回では、AI Agentを実際の業務に適用する際の難しさについてお話ししたいと思います。 ぜひご期待ください。 前の記事へ AIエージェントページへ 次の記事へ
- 風力AI | 数学とAIで社会課題を解決するArithmer
ダウンタイムの発生や、故障・事故による社会的影響、メンテナンス人材の不足など、課題の多い風力発電業界。AIエンジンを駆使して「スマート保安」に貢献します。 Wind Power AI 脱・事後処理 「まさか」を検知し事前 に通知 風車の故障におけるダウンタイムの発生や、故障・事故による社会的影響、メンテナンス人材の不足など、対処すべき課題の多い風力発電業界。 ArithmerはAIによる画像解析技術を用いて「スマート保安」に貢献します。 お問い合わせはこちら 風力AI こんなお悩みありませんか? 発電機故障による ダウンタイムの発生 風力発電の事故における 社会的影響 メンテナンス人材の不足 風力AIはそんなあなたの課題を解決します 風力AIの特長 風力に画像検査のAIを活用 機器異常の予兆を検知します 風力発電のナセル内部にカメラを設置し、常時、画像データを取得します。 常時画像を取得しているので故障に至る前の予兆を発見することができます。 正常状態を学習 あらゆる「異常」を検知します。 計測されたデータがあれば、あとはAI技術とシミュレーションにお任せすることで、 結果の取得が可能となります。 カメラとAIシステムが常に監視 人材不足を解消できます。 カメラから取得した画像データはAIシステムが常に監視するため、人による作業工数を減らすことができ、業務の効率化を図ることができます。 ※画像はイメージです 風力発電設備の 予兆保全・異常検知 月次巡視を、AIによるリアルタイム監視に置き換えて「スマート保安」を実現します。 INPUT 監視カメラ映像 AIシステム 教師なし学習 学習モデルから推論までワンストップ OUTPUT 日次レポート 異常報告レポート 導入事例 ※画像はイメージです 株式会社ユーラスエナジーホールディングス様 カメラを用いた予兆AIが風車の月次巡視を一部代替 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら
- お問い合わせ | 数学とAIで社会課題を解決するArithmer
Arithmerでは7領域においてAIシステムを導入しています。一気通貫の対応力でお客様の課題解決に貢献いたします。 Contact お問い合わせ 送信完了しました お問い合わせいただきありがとうございます。 確認の上、担当者よりご連絡いたします。 トップへ
- 会社概要 | 数学とAIで社会課題を解決するArithmer
Arithmerは、数学で社会課題を解決する会社です。Arithmerという社名は、算術、数学という意味の “Arithmetic” から名付けました。 Company 会社概要 Arithmetics focus on Social Challenges 数学で社会課題を解決する Arithmerは顧客やパートナーのデジタルトランスフォーメーション(DX)に寄り添うAI開発会社です。数学のコア要素技術をベースに、製造AI、風力AI、インフラAI、物流AI、リテールAI、バイオAIなど、さまざまな最先端のAIエンジンを駆使したソリューションのほかに、これらに生成AIを組み込んだソリューションなどを開発しています。これらの高度技術を自在に組み合わせることで、顧客の課題解決に貢献してまいります。 会社概要 会社名 Arithmer 株式会社 創業 2016年9月1日 資本金 1億円(2025年3月31日現在) 代表者 大田佳宏 代表取締役社長 兼 CEO (博士(数理科学)(東京大学)) 代表挨拶> 取締役 乾 隆一 取締役 常務執行役員 兼 CFO 経営管理本部長 森 雅巳 取締役 執行役員 研究開発本部長 中村壮秀 取締役(社外)アライドアーキテクツ㈱取締役ファウンダー 岩田彰一郎 取締役(社外)㈱フォース・マーケティングアンドマネージメント 代表取締役社長(アスクル㈱創業者) 監査役 星野義雄 常勤監査役 高岡彰治 監査役(社外) 落合孝文 監査役 執行役員 乾 隆一 取締役 常務執行役員 兼 CFO 経営管理本部長 森 雅巳 取締役 執行役員 研究開発本部長 アクセス 本社 〒113-0033 東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 TEL:03-5579-6683 アクセスマップ> 名古屋オフィス 〒451-0042 愛知県名古屋市西区那古野二丁目14番1号 なごのキャンパス 2-1号室 大阪オフィス 〒542-0081 大阪府大阪市中央区南船場3丁目9-10 徳島ビル11階 徳島オフィス 〒770-0831 徳島県徳島市寺島本町西1-61 徳島駅クレメントプラザ5階 東京大学サテライトオフィス 〒113-0032 東京都文京区弥生2丁目11-16 東京大学浅野キャンパス アイソトープ総合センター1F Arithmer本社 〒113-0033 東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 名古屋 オフィス 〒451-0042 愛知県名古屋市西区那古野二丁目14番1号 なごのキャンパス2-1号 東京大学サテライトオフィス 〒113-0032 東京都文京区弥生二丁目11番16号 東京大学浅野キャンパス アイソトープ総合センター1階 徳島オフィス 〒770-0831 徳島県徳島市寺島本町西一丁目61 徳島駅クレメントプラザ5階 大阪オフィス 〒542-0081 大阪府大阪市中央区南船場 三丁目9番10号 徳島ビル11階
- 浸水AI | 数学とAIで社会課題を解決するArithmer
シミュレーションを行うには、知識や膨大な試行回数が必要になり、結果が出るまで数カ月を要します。シミュレーション✕AIで解析を高速化し、水災リスク低減の一助となります。 浸水AI Flood Risk Assessment AI AI技術×シミュレーションで 圧倒的に速い解析時間を実現 お問い合わせはこちら こんなお悩みありませんか? シミュレーションを扱える人が 属人化している 専門知識やシミュレーションの取り扱い、結果の解釈など様々な知識が必要で、シミュレーションを実施できる人材が属人化していませんか? シミュレーションの 計算コストが高い シミュレーションを実施する際には多くのパラメーターを入力することがあります。そのため、計算コストをかけておりませんか? 大量のデータ シミュレーションが必要 シミュレーション結果を得るために大量のデータ、大量の試行回数が必要になっており、結果出力まで膨大な時間を要していませんか? これらの課題は浸水AIで解決できます 浸水AIの特長 パラメーター推定にAIを 活用することで属人化の排除 計測された実測値を元にパラメーター推定をAIで実施するため、属人化を解消することが可能です。 AI×シミュレーションで 計算コストの大幅削減 計測されたデータがあれば、あとはAI技術とシミュレーションにお任せすることで、結果の取得が可能となります。 少ないデータ、 試行回数で解析を実現 指定されたエリアのいくつかの計測されて少ないデータを入力することが可能となり、データの準備の省力化に寄与できます。 浸水被害予測・推定。その他、ガス拡散元同定 / 炭素排出量の見える化など数少ないデータでもさまざまなインフラのシミュレーシ ョンに活用できます。 少ないインプットデータ/ パラメータ で結果を得ることが可能 従来とは異なる高度数学を用いた手法を採用しているため、解析時間の高速化を実現 インプットデータがあれば、発生前に予測を行うことが可能 ※画像はイメージです 河川氾濫前の浸水高予測 河川氾濫の発生前に、気象データなどから〇時間後に河川氾濫が起こる可能性を予測し、防災・減災にお役立ていただいております。 INPUT ・気象データ ・観測データ ・地形データ 水害前 浸水高予測 AIシステム OUTPUT 指定された地域の ・浸水高情報 ・浸水エリア情報 河川氾濫後の浸水被害推定 河川氾濫発生後の水害状況を把握し、保険金支払いの迅速化などにお役立ていただけます。シミュレーションイメージはこちら (熊本県人吉市球磨川の氾濫活用事例) INPUT ・実測された浸水高情報地形データ 水害後 浸水高予測AIシステム OUTPUT 指定された地域の ・浸水高情報 ・浸水エリア情報 ※画像はイメージです ※画像はイメージです 炭素排出量の見える化 計算コストが高かったシミュレーション負荷を高度数学を用いて軽減し、炭素排出量を計測します。 INPUT ・地図情報 ・環境情報 ・気象情報 ・電力消費情報 AIシステム 高度数学を用いた炭素排出量算出アルゴリズム OUTPUT 指定された地域の炭素排出量の可視化 導入事例 三井住友海上火災保険株式会社様 浸水シミュレーションにより保険金支払いのリードタイムを最大1/5短縮可能に より詳しく ※画像はイメージです 株式会社エヌ・ティ・ティ・データ様 別府市とNTTデータのまちづくり推進のための連携協定締結においてAIシミュレーション技術を提供 より詳しく 導入までの流れ ヒアリング 現状についてヒアリングを行い、弊社のソリューションで課題解決できるか確認致します。 要件定義/本契約 カメラの仕様、1日あたりの撮影回数・カメラ台数など運用に必要な条件を確認。その後、見積提出・本契約になります。 システム構築 要件定義に基づきシステム構築を行います。 運用開始 構築したシステムを提供し、お客様にて運用を開始いただきます。安定稼働を目指し、弊社にてアフターサポートを行います。 Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら
- AI Agent column1 | Arithmer
AI Agent Column 1 2024.12.26 AI Agentとは? 近年のAIの進化は目覚ましく、私たちは既に対話型AIや生成AIを日常的に活用しています。その中でもここ1・2年、特に注目されているのが "AI Agent" という概念です。AI Agentとは一体何でしょうか? これまでのAIと何が違うのでしょうか? AI Agentコラム第1回の本稿では、まずAI Agentとは何を指すのかを整理したいと思います。 ―――― AI Agent とは? 例えば、あなたが旅行の計画をしているとします。目的地や日程だけをAIに伝えると、最適なフライトを検索し、予約を完了してくれる。さらには、ホテルの予約やレストランの手配まで自律的に進めてくれる― ―これが、今注目されているAI Agentの一例です。 "AI Agent" という言葉自体は以前からありましたが、現在のような「大規模言語モデル(LLM)を活用し、自律的にタスクを遂行するシステム」の意味で使われ始めたのは、2023年4月ごろからです。具体的には、LangChain, Auto-GPT, BabyAGIなどのシステムが次々と登場し、それぞれがツール連携やタスク処理の新しい可能性を示しました。従来の対話型AIとは異なり、目標達成のために自ら情報を集めタスクを分解し実行する『行動するAI』という新しい方向性を打ち出したと言えます。これ以後このコンセプトが "AI Agent" として広まり、ビジネスや研究の分野で大きな注目を集めています。 このように "AI Agent" は幅のある概念ですが、このコラムでは次のように定義します。 「自律性、反応性、積極性、社会的能力を持ち、環境と相互作用して目標を達成するシステム」 これを図にすると以下のようになります。自律性、反応性、積極性、社会的能力という4つの特性が連携して、AI Agentが目標達成する仕組みを表しています。 ここで特に注目すべきは、「環境に作用して目標を達成する」という点です。従来の対話型AI(ChatGPTなど)は、ユーザーの問いに答える「受動的」な存在でした。しかし、AI Agentは目標に向けて自ら情報を探し、計画を立て、ツールや他者との連携を通じてタスクを遂行する「能動的」な存在へと発展しています。 従来の自動化との違いは? 「行動する」システム自体は以前からありました。 例えば、RPA(Robotic Process Automation )は2010年代前半ごろから広く認識され実用化している技術です。RPAも環境を観測し、自律的に環境に対して行動を起こすことができます。ただし、その判断はルールに従って行われ、そのルールは事前にプログラムやフロー図など形式的な手法で記述しなければなりません。 これに対して “AI Agent” は、ユーザーが自然言語で目的を指示するだけで、あとは判断することができます。この差は非常に大きいものです。 冒頭に挙げた旅行の手配の例で考えてみましょう。 RPAを使った場合、フライト予約はあらかじめ設定された手順に従って行われます。航空会社のウェブサイトにアクセスし、日付や目的地を入力して検索、条件に合うフライトを選んで予約する、といったプロセスです。しかし、この手順は固定的で、予期せぬ事態には対応できません。例えば、フライトが満席の場合、RPAは次の手順に進めず、人間が条件を再設定する必要があります。 一方、AI Agentは異なります。フライトが満席の場合、自ら次の選択肢を探し、条件に合う別のフライトを提案します。それだけでなく、フライト変更が宿泊やレンタカー手配に影響する場合でも、関連タスクを再調整し、計画全体を柔軟に再構築できます。固定的な手順に縛られず、目標達成に向けて動けるのがAI Agentの特長です。 AI Agentの位置づけ このように、AI AgentはChatGPTの自然言語能力とRPAの自動実行の技術が融合したものと捉えることができます。対話型と自動実行型、自然言語とルールベースという2軸で整理すると以下のようになります。 このように、AI Agentは「自然言語で指示し、タスクを自動実行する」という点で、他の技術とは一線を画しています。 ―――― 今回は、本AI Agentコラムの第1回として「AI Agentとは?」を整理してみました。次回の第2回では、AI Agentがなぜいま、企業や研究者たちの注目を集めているのか、その背景を掘り下げていきます。ぜひご期待ください。 AIエージェントページへ 次の記事へ
- 代表挨拶 | 数学とAIで社会課題を解決するArithmer
数学、科学をいかに応用して、社会課題を解決するのか、そしてHope(希望)へとつなげるのか、それを考えるのが私たちの仕事です。 Message 代表挨拶 現代数学を応用し まだない新しい技術を創造してゆきます 代表取締役社長 兼 CEO 大田佳宏 Arithmer株式会社 代表取締役社長兼CEO 総務省 AIネットワーク社会推進会議 構成員 東京大学大学院数理科学研究科 客員教授 東京大学アイソトープ総合センター 客員教授 一般社団法人日本応用数理学会 代表会員 博士(数理科学)(東京大学) Arithmetic × AI Arithmerは、数学で社会課題を解決する会社です。 算術、数学という意味の“Arithmetic”から名付けました。 数学は簡潔にして美しく、世界を変える力を持っています。 これまでの数学者、科学者、技術者達も、それを証明してきました。 そして現在、私達は現代数学を応用して、さまざまな社会課題を解決するため、新しい高度AIシステムを導入しています。 私達は業界を代表する多くの企業様にArithmerのAIソリューションをお使いいただいている事に感謝をするとともに、その大きな社会的責任もしっかり認識して、よりよい未来のための新しい技術を創造していきたいと思います。 代表取締役社長 兼 CEO 大田佳宏 メディア掲載 熊本日日新聞に当社の浸水AIの記事が掲載されました 金沢シーサイドFMのラジオ番組に当社代表が出演、YouTubeでアーカイブを公開 モノ・マガジン9.16号に当社の浸水AIが紹介されました メディア掲載一覧へ






