top of page

Search

検索

55件の検索結果が見つかりました

  • お問い合わせ | 数学とAIで社会課題を解決するArithmer

    Arithmerでは7領域においてAIシステムを導入しています。一気通貫の対応力でお客様の課題解決に貢献いたします。 Contact お問い合わせ 送信完了しました お問い合わせいただきありがとうございます。 確認の上、担当者よりご連絡いたします。 トップへ

  • 実績一覧 | 数学とAIで社会課題を解決するArithmer

    高度数学のビジネス活用を目指し、様々な分野でイノベーションの実現を推進しています。 形式科学である数学、自然科学である物理学など、様々な分野の研究者がシナジーを生み出し、 それらを活用したプロジェクトが同時進行しており、その適応領域は拡大しています。 Projects ArithmerではAI・IT技術でさまざまな社会課題を解決しています 高度数学のビジネス活用を目指し、さまざまな分野でイノベーションの実現を推進しています。 形式科学である数学、自然科学である物理学など、さまざまな分野の研究者がシナジーを生み出し、 それらを活用したプロジェクトが同時進行しており、その適応領域は拡大しています。 株式会社コナカ様 店頭と同様に洋服選びの楽しみを 世界初、「完全パーソナライズド AIレコメンデーション」 三井住友海上火災保険株式会社様 浸水シミュレーションにより保険金支払いのリードタイムを最大1/5に短縮可能 株式会社デンソーウェーブ様 デンソー様の人協働ロボットCOBOTTA®とコラボレーションし、塗抹法細菌培養を自動化 徳島大正銀行様 地方銀行様が保有しているビックデータを有効活用した、経営課題AI支援システムを導入 株式会社コナカ様 スマホを使用した高精度3次元採寸アプリにより、オーダースーツの売上が7倍に 日本電気株式会社様 NECとArithmerの協業でマイナンバー認証サービスの推進に貢献。「なりすまし」を防止 三井住友海上火災保険株式会社様 画像解析により損傷箇所を算出し30日かかっていた保険金支払額の確定の日数を約3日間に短縮 大手製薬会社様 神の手と呼ばれる製薬会社の技術者の熟練した動作をロボットにて再現。職人の技を実装 日本気象協会様 AI技術を活用し道路の管理業務を効率・高度化へ貢献。台風や低気圧による越波の自動巡回・監視 お問い合わせはこちら

  • AI Agent column10 | Arithmer

    AI Agent Column 10 2025.12.10 AI Agentコラム (10): AI Agent導入 step4 ”計画“ AI Agent導入の4ステップ「理解」「選定」「設計」「計画」。前回(第9回)はステップ3「設計」として、AI Agentを業務に組み込む「to-be」の描き方についてお話しました。 さて、いよいよ最終ステップとなる今回は「(4) 計画 (Plan)」です。設計で描いたto-beの実現に向けた具体的なステップを計画する際に、どのようなことに留意するべきかお話したいと思います。 ―――― AI Agent ならではの注意点 第一に、中核となるLLM(大規模言語モデル)そのものが持つ「御しにくさ」 です。 LLMは確率的に動作するため、同じ指示でも応答が揺らぐことがあり、その思考プロセスは完全には透明ではありません。また、膨大な知識を持つ一方で、特定の業務に必要な専門知識や暗黙知は不足していたり、時には事実に基づかない情報(ハルシネーション)を生成したりすることもあります。さらに、その能力を最大限に引き出すための最適な指示(プロンプト)を見つけること自体が、試行錯誤を要する複雑な作業です。この「御しにくさ」があるため、AI Agentの挙動を完全に予測し、制御することは本質的に困難なのです。 第二に、AI Agentには、単に応答を生成するだけでなく、自律的に「実行を任せる」ことによる特有のリスク が伴う点です。AI Agent が外部ツールと連携したり、システムを操作したり、あるいは顧客と直接やり取りしたりする場合、その「御しにくい」挙動が、ビジネス上あるいは社会的に無視できない影響を直接的に及ぼす可能性があります。従来のAI以上に、そのアクションの結果に対する責任と、安全性をどう担保するかが問われます。 この「LLMの御しにくさ 」と「実行を任せるリスク 」という 2つの大きな特性があるからこそ、事前に全てを完璧に計画することが難しく、次のセクションで述べるような、不確実性を前提とし、リスクを管理しながら、実践を通じて学習・適応していくための特別な計画上の配慮が不可欠となります。 1. 不完全であることを前提に計画する まず大前提として、AI Agentは導入初期において「不完全」であることを受け入れなければなりません。LLM の確率的な性質や学習データの限界、そして私たちがまだ知らない未知の挙動などにより、事前にすべてのケースを想定し、完璧な準備を整えることは不可能です。 したがって、計画においては「完璧な状態でのリリース」をゴールとするのではなく、「不完全な状態から安全に学び、成長させていくプロセス」そのものをデザインする必要があります。 そのための具体的なアプローチが「スモールスタート」です。これは、リスクを最小限に抑えつつ、早期に現実世界でのフィードバックを得て学習するための極めて有効な戦略です。計画段階で、「どこまで小さく始めるか」を具体的に定義します。 意図的にリスクを限定した「練習環境」を計画的に用意し、その中で AI Agentを動かし、挙動を観察し、改善していく。そして、スモールスタートから得られる様々なフィードバック(AIの挙動、ユーザーの声、業務影響など)を意図的に収集し、分析し、それを次のイテレーション(反復)の計画に迅速に反映させるループを計画に組み込むことが重要です。 従来のウォーターフォール型計画のように、一度立てた計画に固執するのではなく、実践からの学びに基づいて計画自体を柔軟に見直し、適応させていく。このアジャイル的な進め方こそが、不完全で予測不能な AI Agentと共に歩むための現実的なアプローチです。 2. リスクの取り方を計画する AI Agentの自律性を本当に活用するには、ある程度の「リスク」を取って実行を任せる場面も出てきます。しかし、最初からすべてを委ねるのは危険です。そこで重要になるのが、リスクをコントロールしながら段階的に適用範囲や権限を広げていく計画です。 計画段階で、AI Agentに任せる機能、アクセスできるデータ、実行可能なアクションなどを、どのようにステップを踏んで拡大していくかのロードマップを具体的に描きましょう。そして最も重要なのは、各ステップにおいて「許容できるリスクはどこまでか」「何を達成できれば次のステップに進めるのか」という客観的な基準(例えば、特定のタスクにおける成功率、エラー発生頻度、人間の修正頻度など)を事前に明確に定義し、関係者間で合意しておくことです。 特に、導入初期に安全策として設けることが多い「人間による判断・介入」プロセスは、あくまで AI Agentを育成するための「補助輪」と捉える視点が大切です。その補助輪をいつ、どのような状態になったら取り外すのか、その移行プロセスと判断基準を計画に明記しておかないと、人間によるチェックが恒久化し、結果的に AI Agentの自律性を十分に引き出せないままになってしまう可能性があります。必要なリスクは取り、不要なリスクは取らない、長期視点での合理的な判断が求められます。 3. 問題発生時の対応を計画する AI Agent の導入計画においては、残念ながら問題が起こることを避けられない前提として捉える必要があります。その確率的で複合的な性質上、予期せぬ挙動やエラー、あるいは期待通りの結果が出ないといった事態は必ず発生し得ます。重要なのは、発生をゼロにすることではなく、発生した場合にいかに迅速かつ柔軟に対応し、さらにそれを次に活かすかを計画しておくことです。 計画には、まず問題を早期に検知するためのモニタリング体制(ログ収集・分析、異常検知アラートなど)の整備を含めるべきです。AI Agent は原因特定が難しい場合も多いため、迅速な状況把握と影響範囲の特定、そして必要に応じた暫定的な対処(関連機能の一時停止、人間による代替処理など)と、その後の恒久的な対策に繋げるプロセスを定めておくことが有効です。 さらに強調したいのは、発生した問題を単なる「障害」として処理するのではなく、AI Agentと組織全体の「学習機会」と捉える視点です。問題発生時の状況、原因(推定でも構いません)、対処内容とその結果といった情報を構造化されたデータとして記録・蓄積する仕組みを作りましょう。この「失敗からの学び」を分析し、AI Agent 自体の改善や、運用プロセスの見直しに繋げていくフィードバックループを回すこと。これこそが、AI Agentを継続的に進化させるエンジンになります。 ―――― 今回は、導入の最後のステップ「計画」についてお話ししました。 そして本コラム『AI Agentコラム』は、この第10回をもちまして最終回となります。 長きにわたりご愛読いただき、誠にありがとうございました。 この連載では、まず AI Agentとは何かという基本的な概念から始め、その適用範囲、課題、実際のユースケースをご紹介しました。第 6回からは導入プロセスを「理解」「選定」「設計」「計画」という4つのステップに分けて、それぞれの実践面での注意点を掘り下げてまいりました。 私たちが一貫してお伝えしたかったのは、AI Agentが秘める大きな可能性と、それに伴う固有の難しさ、特にその「不確実性」とどう向き合うか、という点です。 本コラムでご紹介した考え方やアプローチが、皆様それぞれの挑戦におけるヒントとなれば大変嬉しく思います。AI Agentを取り巻く世界は、これからも急速に変化していくでしょう。私たち Arithmerが、その道のりを共に考え、歩むパートナーとして、少しでもお役に立てることがあれば幸いです。 改めまして、全10回の連載にお付き合いいただきましたこと、心より感謝申し上げます。 前の記事へ AIエージェントページへ

  • 経営理念 | 数学とAIで社会課題を解決するArithmer

    数学で社会課題を解決し、世界に希望を                                 Philosophy 経営理念 Mission 数学で社会課題を解決する Arithmetics focus on Social Challenges Vision 最先端数学とAIで、お客様と社会の持続的成長を加速するグローバルイノベーターへ To become a global innovator that accelerates the sustainable growth of our customers and society through cutting-edge mathematics and AI Value Customer Growth First 顧客価値を最大化する Always Frontier 世界最先端の数学・AI 技術を最速で実装し続ける Math for Better Society 公益性と長期視点で意思決定する

  • Arithmer | Privacy

    Arithmer株式会社はプライバシーマークを取得しております。                    Privacy プライバシーマーク Arithmer株式会社はプライバシーマークを取得しております。 証明書はこちら 事務所 Arithmer 株式会社 事業所 東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 認証機関名 一般財団法人日本データ通信協会 認証登録番号 第21004668(03)号 有効期限日 2024年8月17日~2026年8月16日

  • AI Agent column7 | Arithmer

    AI Agent Column 7 2025.6.3 AI Agent導入step1 “理解” こんにちは。ArithmerのAI Agent担当コンサルタントです。 AI Agent コラム、大分、時間が経ってしまいましたが、前回(第6回)は導入プロセスの全体像として4つのステップ「(1)理解」「(2)選定」「(3)設計」「(4)計画」をご紹介しました。AI Agentという新しい技術を使いこなし、ビジネス価値に繋げるためには、このステップを順に踏むことが重要です。 今回はその最初のステップの「(1) 理解」について掘り下げていきたいと思います。 ―――― 理解すべきこと 「ITとAIとの違い」についてはもうよくご存じの方も多いと思います。 では「従来のAIとAI Agentとの違い」について特に理解しなければいけないこととは一体何でしょうか? 従来のAIの適用は「教師あり学習」を業務に当てはめることがメインでした。特に分類や回帰といったタスクに取り組む教師あり学習では、「解きたい問題」に対して探索すべき変数は、主に「データ(前処理含む)」「アルゴリズム(モデル選択)」「ハイパーパラメータ」の組み合わせでした。もちろん、これも試行錯誤は必要でしたが、交差検証やグリッドサーチ、ベイズ最適化といった体系的な方法論がある程度存在し、探索空間の構造もある程度は見え、「どう頑張れば精度が上がりそうか」「どこが限界か」の見極めも、比較的、道筋が見えやすかったと言えます。これは言ってみれば、地図がある土地での探索に例えることができるでしょう。 ところが、AI Agentの世界は根本的に異なります。まず中核エンジンであるLLMのプロンプト調整だけでも、探索空間は、その構造も非常に複雑で、広さも膨大です。 それに加えて、他の部品(RAGの設定、ツールの種類と使い方、推論プロセスなど)との無数の組み合わせ方や、それぞれの調整項目が掛け合わさることで、全体の探索空間は文字通り爆発的に増大します。つまりAI Agentの活用は、未知の世界での探索に例えることができます。 この「質的にも量的にも桁違いに広大で、確立された方法論がない探索空間」をどう進むか、それが現在のAI Agentにおける大きな挑戦であり、導入を検討する上で理解しておくべきことの核心です。 理解するためのお薦めステップ この「リアルな難しさ」を前にして、私たちはどうすればAI Agentを本当に理解し、その可能性と限界を見極める実践的な感覚を身につけることができるのでしょうか? それは、「座学」、「実践」、「議論」という、一見シンプルに見えるサイクルを回すことに尽きると、私たちは考えています。 座学 : 書籍・論文・記事の調査や講座の受講などにより、知識を習得する 実践 : ChatGPTなどを介して、AI Agentの中核のLLMの能力を体感する 議論 : ①、②で得た気づきを言語化・共有し、チームとしての共通認識を築く 特にポイントとなるのが3番目のステップです。 知識の習得(①座学)や能力の体感(②実践)に、この言語化・共有(③議論)を加えることで、初めて以下のような価値が生まれます。 個人の理解が深まる : 自分の言葉で説明しようとすることで、曖昧だった理解が明確になり、思考が整理されます(暗黙知→形式知)。 客観性と多角的な視点が得られる : チームで共有し議論することで、「そういう見方もあるのか」「そのリスクは考えていなかった」といった多様なフィードバックやインプットが得られ、一人では気づけなかった偏りや盲点が修正されます(集合知の活用)。 組織としての前進が可能になる : 共通の言葉で議論し、認識を合わせることで、チームや組織として「何を理解し、次に何をすべきか」という合意形成ができ、具体的な計画や意思決定に繋げることができます。個人の学びが組織の力に変わるのです。 これが、私たちが「座学 」「実践 」に加えて「議論 」という3つ目のステップをお勧めする理由です。 ―――― さて、次回(第8回)は、いよいよステップ2「選定」です。AI Agentの強みを活かせる業務を具体的にどのように見極めていくのか、そのプロセスと評価のポイントについて詳しく解説していきます。ぜひご期待ください。 前の記事へ AIエージェントページへ 次の記事へ

  • 役員紹介 | 数学とAIで社会課題を解決するArithmer

    Arithmer株式会社の役員のご紹介                                Leadership 役員紹介 数学で社会課題を解決する 代表取締役社長 兼 CEO 大田 佳 宏 ≫代表挨拶はこ ちら Arithmer株式会社 代表取 締役社長 兼 CEO 総務省 AIネットワーク社会推進会議 構成員 東京大学大学院数理科学研究科 客員教授 東京大学アイソトープ総合センター 客員教授 一般社団法人日本応用数理学会 代表会員 博士(数理科学)(東京大学) 取締役 常務執行役員 兼 CFO 経営管理本部長 乾 隆一 Arithmer株式会社 取締役 常務執行役員 兼 CFO 経営管理本部長 取締役 執行役員 研究開発本部長 森 雅巳 Arithmer株式会社 取締役 執行役員 研究開発本部長 社外取締役 取締役(社外) アライドアーキテクツ㈱取締役ファウンダー 中村 壮秀 取締役(社外) ㈱フォース・マーケティングアンドマネージメント 代表取締役社長(アスクル㈱創業者) 岩田 彰一郎 監査役 常勤監査役 星野 義雄 社外監査役 高岡 彰治 監査役 落合 孝文 アドバイザー 坪井 俊 東京大学大学院 数理科学研究科 名誉教授 武蔵野大学 工学部数理工学科 特任教授 元・社団法人日本数学会 理事長 米村 敏朗 第87代警視総監 第17・18代内閣危機管理監 東京オリンピック・パラリンピック競技大会組織委員会CSO 丸尾 浩一 株式会社Major7th 代表取締役社長 元・大和証券株式会社 専務取締役 下別府 俊也 三井住友信託銀行株式会社 元専務執行役員 執行役員・フェロー 常務執行役員 乾  隆一 執行役員 森  雅巳 フェロー 有田 親史

  • 製造AI | 数学とAIで社会課題を解決するArithmer

    製造や加工の工程で発生する部品のばらつき判定や、自動運転のサポートなど、現場の暗黙知を組織知に変えるAIを開発・提供します。 製造AI Manufacturing AI 製造や加工の現場で起きるさまざまな困りごとをAIを用いて最適化する 製造や加工の工程で発生する部品の不良品判定や、自動運転のサポートなど、現場の暗黙知を組織知に変えるAIを開発・提供しています。 お問い合わせはこちら こんなお悩みありませんか? 工場内カートや大型トラックの 巻き込みによる接触事故 機械のトラブルによる 作業の停止時間をを短縮したい 加工後の検査精度を高め不良品出荷リスクを抑制したい 製造AIはそんなあなたの課題を解決します 製造AIの特長 動画解析技術を用いて 危険状態を検知 車体に取り付けたカメラで車両周辺や監視車両側面、後方を監視し、障害物を検知すると注意を喚起します。 画像検査のAIを活用し 機器異常の予兆を検知 機器の動きを動画像データで取得することで、異常(故障に至る前の予兆)を発見します。大きなトラブルを未然に防ぎ、作業ロスを低減します。 画像解析エンジンを活用し不良品の見逃しリスクを改善 既存の検査装置とAI画像解析エンジンを組み合わせることで、不良品の見逃しを削減。不良品出荷リスクと再検査工数の削減に貢献します。 ※画像はイメージです 生産設備の予兆保全 製造装置の通常サイクルを学習し、人の目では気付きにくい「いつもと違う変化」を察知します。これにより設備異常を早期に発見し、結果的に甚大な被害を予防します。 INPUT 通常動作の 動画 AIシステム 生産設備の 異常検知 OUTPUT 異常箇所の通知 自動運転システムにおける 予兆保全・異常検知 AGVやフォークリフトなどのシステムと実装することで、危険エリアを自動的に調整・監視。接触事故を未然に防ぎます。 エッジコンピュータを活用し、移動に合わせて監視エリアを自動的に調整することができ、リアルタイム検知が可能となります。 INPUT 動画像 OUTPUT 異常箇所の通知 AIシステム 自動運転システムとの組み合わせ ※画像はイメージです 導入事例 トヨタ自動車株式会社様 工場内運搬カートの後方安全に関する特許を共同で出願 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら

  • リテールAI | 慢性的な人手不足を数学のチカラでサポート

    パーソナライズされたAIレコメンド機能や、スマホカメラを使用した高精度な自動採寸など、小売りの現場で活用できるAIを提供しています。 Retail AI 慢性的な人手不足の小売りの現場で AIがさまざまな役割を補完 お問い合わせはこちら パーソナライズされたAIレコメンド機能や、スマホカメラを使用した高精度3次元採寸など、小売りの現場で活用できるAIを提供しています。 リテールAI こんなお悩みありませんか? 商品の発注業務に人手を割かれて 接客がおろそかになる オーダーメイドの採寸技術が 熟練者から継承できない お客様の要望にお応えできるプロフェッショナル人材が不足している リテールAIはそんなあなたの課題を解決します リテールAIの特長 蓄積された実績とSNSトレンドを 組み合わせて自動発注 過去の販売実績のデータだけではなく、SNSでの今のトレンドも加味した上で販売予測を立てて発注を行います。 専門の採寸技術者は不要で 店員の負担軽減が可能 店舗での採寸業務を自動採寸に置き換えることにより、店員の負荷軽減や、店員配置の最適化に貢献します。 数万のデータから 顧客のニーズに合った商材をレコメンド 顧客情報や商談記録などから、ニーズやシーズをAIが集約し、顧客に合わせた情報や解決策などを提供することができます。 ※画像はイメージです トップテーラーの技術を スマホで再現 トップテーラーの技術を学習したAIエンジンが、身長、体重、年齢と写真2枚だけで指定の採寸箇所の計算結果を出力します。カジュアル、ビジネスだけでなく、さまざまな採寸に応用できます。 INPUT 身長 体重 年齢 写真2枚 AIシステム 自動採寸AIシステム OUTPUT 指定箇所の採寸結果 ビッグデータ×AIアルゴリズム 個人の嗜好に合わせたレコメンド 3つのAIエンジン「AIデリバリー」「AIコーディネイト」「セレクトレンズ」が、コンシェルジュの行う接客と同じように、個々のユーザーに寄り添ったベストなレコメンデーション体験を提供します。 INPUT 顧客データ 採寸データ SNS自動収集データ AIシステム AIデリバリー AIコーディネイト セレクトレンズ OUTPUT おすすめ商品の提案 ※画像はイメージです ※画像はイメージです 顧客のニーズとシーズをマッチング 最適化AIレコメンドシステム 銀行内で分散管理されている、顧客の「企業情報」「財務データ」「商談記録」などを集約し独自のDBを構築。このDBを基に販路拡大や仕入れ先・外注先の確保など、顧客のニーズとシーズを組み合わせることで、最適なマッチングを提案します。 INPUT 企業情報 財務データ 商談記録 AIシステム 最適化AIレコメンドシステム OUTPUT 企業同士のマッチング候補 株式会社ヤマダヤ様 身長・体重・年齢と写真3枚の 撮影でオーダーメイドの 採寸が完了 女性向け自動採寸AIエンジン より詳しく 導入事例 株式会社コナカ様<SUIT SELECT> スマホ上で店頭での洋服選びの 楽しみを完全再現世界初 「完全パーソナライズド AIレコメンデーション」 より詳しく 徳島大正銀行様 保有している情報資産 (ビッグデータ)を 有効活用 経営課題AI支援システムを導入 より詳しく 国立大学法人鳴門教育大学様 学生の自己伸長型の学び促進。教員に求められる資質能力を可視化。「教員養成学修可視化システム」 より詳しく 株式会社ヤマダヤ様 ECサイト上で試着イメージを提供 リアルとデジタルでのシームレスな購入体験 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら

  • インフラAI | 数学とAIで社会課題を解決するArithmer

    土木現場におけるリスクやコスト負荷などをAIを用いて解決します。生産性の向上を図り、魅力ある建設現場を目指す「i-Construction」推進に寄与します Infrastructure AI 現場におけるリスクやコストの 負荷をAIで解決 土木の現場におけるリスクやコストなどの負荷を、AIを用いて解決します。生産性の向上を図り、魅力ある建設現場を目指す「i-Construction」の推進に寄与します。 お問い合わせはこちら インフラAI こんなお悩みありませんか? 作業現場での作業事故を 無くしたい シミュレーションを扱える人が 属人化している 大量のデータ シミュレーションが必要 インフラAIはそんなあなたの課題を解決します インフラAIの特長 過去の作業事故報告から 今回の作業危険箇所を提示する さまざまな現場で発生する事故報告を集計・分析することで、現在の作業工程からAIが危険度を判定。注意点などの提示も行い作業事故0を目指します。 パラメーター推定にAIを 活用することで属人化の排除 計測された実測値を元にパラメーター推定をAIで実施するため、属人化を解消することが可能です。 少ないデータ、試行回数で 解析を実現 類似ケースをあらかじめ学習することで、指定されたエリアではデータの計測がわずかでも解析が可能となり、データ準備の省力化に寄与できます。 ※画像はイメージです 大雨による影響を事前に把握、 工期遅れを最小限に 天候に左右される建築の現場において大雨は大敵。立地条件などから降雨量に応じたシミュレーションをあらかじめ行うことで治水対策を効率化し、工期管理にお役立ていただけます。 INPUT 気象データ 観測データ 地形データ AIシステム 浸水高予測AIシステム OUTPUT 工事現場での 水たまりシミュレーション 貯水槽などの配置シュミレーション ドローンカメラで画像を収集し、点検や異常検知を効率化 ドローンカメラで撮影した画像を、AI画像解析技術を用いて異常検知を行います。高所や閉所など、人の目の行き届かない場所も平易に確認できるので、効率化が図れます。 INPUT 正常状態の画像 ドローンカメラで撮影した画像 AIシステム AI画像解析 OUTPUT 異常検知アラート ※画像はイメージです Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら

  • AI Agent column4 | Arithmer

    AI Agent Column 4 2025.1.21 AI Agent 導入の難しさ 前回までのコラムでは、AI Agentの可能性と活用事例について紹介してきました。確かにAI Agentはさまざまな分野で期待されていますが、実際に業務に適用するとなると、いくつか課題があります。今回は、AI Agentを導入する際に直面する代表的な難しさについてお話しします。 ―――― AI Agentは非常に可能性に満ちたツールですが、活用するには越えなければならないいくつかのハードルがあります。具体的には、以下の5つの点で注意が必要です。 1. 不確実性への対処 前回のコラムでも触れたように、AI Agentはしばしば、業務の一部を自動化し、直接「実行」する役割を期待されます。例えば請求書の処理や顧客対応などのタスクです。しかし、AIの中核を成すLLM(大規模言語モデル)やDL(ディープラーニング)は、その性質上「確率的(stochastic)」、つまり出力が不確実で予測しにくいという特徴を持っているため、実行の場面では課題となります。 精度の問題: AIが100回中99回正しく動作しても、1回のミスが重大な結果を招く場面では使用が難しい場合があります。たとえば、請求書で一度でも誤った金額を計算すると、顧客の信頼を損なう可能性があります。 ハルシネーション: AIが存在しない情報を生成してしまうことがあります。たとえば、製品のマニュアルに載っていない解決方法をでっち上げる可能性もあります。 再現性の欠如: 同じ質問をしても、異なる回答が返ってくる場合があります。業務では、結果が一定であることが求められるため、この特性が問題となります。 このような不確実性は、AI Agentに「実行」を任せる上で大きな障壁となります。 2. ドメイン知識とのインテグレーション AI Agentは LLMの持つ汎用的な知識に基づいてタスクを処理することができます。たとえば、旅行の計画を立てたり、メールの文案を作成したりと、さまざまな用途に対応できます。これは、インターネット上の膨大なデータから学んでいるからです。しかし、ドメイン知識が必要な業務を AI Agentに行わせるのは、簡単ではありません。 ドメイン知識の必要な業務: 例えば医療記録を扱う業務では、LLMは一般的な医学知識は持っていますが、病院ごとに異なる記録形式や略語には対応できない場合があります。 また、自社サービスのサポートデスクでは、LLMは一般的なPC・OS・ネットワークなどに関する知識は持っていますが、自社サービス固有の技術情報が必要な問題には対応できない場合があります。 業務特有の知識を与える方法の一つとして、 RA G ( Retrieval-Augmented Generation ) という仕組みがあります。この仕組みでは、関連する情報を事前に収集しておくことで、それを利用してLLMの知識を補完することができます。しかし、このRAGも導入するだけで自動的に効果を発揮するものではありません。場合によっては、ドメイン知識に過剰に適合することで、もともと持っていた汎用知識・能力が損なわれてしまうこともあります。RAGを高精度で機能させるには、データの整理や適切な運用設計など、多くの手間と工夫が必要です。 AIの汎用性を保ちながらドメイン知識を補うのは非常に難しい課題です。 3. 適用業務の選定 AI Agentをうまく活用するには、効果のある業務を選定する必要があります。ここで重要なのは、AI Agentに「何を任せるか」だけでなく、「どのように業務を再設計するか」も合わせて考える必要があるということです。 前後の処理を統合した最適化: 例えば、書類審査の業務において、すでにOCR(光学文字認識)は導入済みで、新たにAI Agentに読み取った情報を基に審査を行わせたいとします。もちろん、既存のOCRの処理は残したまま、判定だけをAI Agentにやらせることは可能です。しかし、読み取りと判断を統合して AI Agentに実行させる方が全体の精度が向上することがあります。これは、AI Agentが「判断」に必要な情報を理解して、その情報の抽出にフォーカスして「読み取り」を行うことができるためです。 逆に、部分的な最適化にとどまると、せっかくのAI Agentのポテンシャルを十分に引き出せないことになります。 4. 継続的改善のための運用設計 AI Agentを導入して終わり、というわけにはいきません。最初から高い精度が出せることはそもそも稀ですし、たとえ導入当初はうまく機能したとしても、業務のデータや前提条件は時間とともに変化するため、次第に精度が低下することは避けられません。 継続的に精度を維持・向上させるためには以下のことを考える必要があります: 「正しい」データをどのように入手するか どのようにAI Agentに教えるか いつどのようにアップデートするか さらに、これらを無理なく実施できる運用が求められます。AI Agentの導入で得られるメリットより、運用の手間・コストがかかるようでは意味がありません。したがって上記のステップは低コストで、つまり自動もしくは半自動で実行できるような仕組みを含めて運用を設計する必要があります。 5. 導入是非の判断 ここまで述べた課題があるため、AI Agentの導入が本当にROI(投資対効果)を生むのかを事前に見極めるのは簡単ではありません。 業務ごとの特性の違い: ここまで述べた問題を解決する万能なソリューションは存在しません。解決にどれほどの労力が必要かは、業務の内容や状況に依存します。そのため業務内容の詳細を検討し、実際のデータを分析して初めて判断できる部分があります。 課題の相互依存: 例えば、2で挙げたドメイン知識のインテグレーションの解決方法によっては、1の不確実性も解消する場合もあれば、そうでない場合もあります。また、3で挙げた適用業務の再設計は、4の継続的改善のための運用設計にも直接影響を及ぼします。 これらの理由から、「AI Agentを導入したらどの程度の成果が得られるのか」を事前に正確に見積もることは非常に難しく現実的ではありません。 5つの「難しさ」に対するArithmerアプローチ このようにいざ実業務にAI Agentを適用しようとすると、現時点ではまだまだ難しい課題があるということをご理解いただけたかと思います。ただこれらの課題に対する有効なアプローチも存在します。難しさを理解した上で、適切なアプローチを採って、ステップを踏んでいくことで、十分克服することが可能です。 ここでは簡単にArithmerがお客様と共にとってきたアプローチの一例をご紹介します。 不確実性への対処: 確率的(Stochastic)なモデルと決定論的(Deterministic)なモデルを組み合わせることで、一貫性と説明可能性を確保 ドメイン知識とのインテグレーション: RAGを機能させるため、過去データを数理的に分析して暗黙知を明らかにし、業務に必要なデータを整理・最適化する仕組みを構築 適用業務の選定: 業務を分解し重要性や適合性をスコアリングして、適用範囲を明確化することで最適な業務フローを構築 継続的改善のための運用設計: モデルのパラメータ調整や柔軟なカスタマイズにより、業務の変化に対応可能な仕組みを整備 導入是非の判断: 小規模かつ段階的導入により初期投資のリスクを軽減し、モデルの透明性と説明可能性を重視することで、顧客が効果判断できる環境を提供 ―――― このようにAI Agentの導入には解決すべき課題が多くありますが、それぞれ有効なアプローチもあることを簡単にご紹介しました。 次回のコラムでは、これらのアプローチを実際にどのように適用し、業務改善につなげたのか、具体的な事例を交えてご紹介します。ぜひご期待ください! 前の記事へ AIエージェントページへ 次の記事へ

  • バイオAI | 数学とAIで社会課題を解決するArithmer

    AI技術×シミュレーションで圧倒的に速い解析時間を実現します。シミュレーションを行うには、知識や膨大な試行回数が必要になり、結果が出るまで数ヶ月を要することがあります。 私たちの流体予測AIシステムでは、これら課題を解決し、活用場面を広げていきます。 バイオAI Bio AI 熟練技術者の技術の継承や 後継者の育成をロボットで再現 新薬開発の現場は、熟練者への依存度が高く、技術の継承や後継者の育成などに課題を抱えています。高度数学技術をロボット技術に掛け合わせることで、職人技の動作を再現します。また、この技術を農業や水産業にも展開しています。 お問い合わせはこちら こんなお悩みありませんか? 複雑で不定形な作業工程を 自動化することができないか 新薬開発における技術継承、 後継者育成が進まない 高齢化が進み、野菜の収穫作業の 省力化や軽労化が急務 バイオAIはそんなあなたの課題を解決します バイオAIの特長 人が行うしかなかった作業を 自動化することで業務負荷を軽減 これまで困難とされていた不定形で軟体物なものに対しても、コンパクトな多関節ロボットを用いることで正確な繰り返し作業を行えます。 ”神の手”の動きをロボットで再現 これまでロボットでは再現が不可能とされていた熟練技術者の動きを、動作解析技術と3Dデータ処理技術で再現ができるようになりました。 AI画像解析や3D点群処理技術を 活用した自動収穫ロボを研究 さまざまなサイズの農作物を自動で収穫するため、収穫対象物の画像解析や3D点群処理技術を活用して、繊細な作業をロボットに代替します。 ※画像はイメージです 3Dピッキングロボットの活用で人とロボットの協働が可能に さまざまな器具を取り扱う研究現場において、複数作業を実施可能なハンドを装着した3Dピッキングロボットを使用。画像認識技術を活用して対象物の位置情報を認識することで正確な作業を繰り返し行うことが可能となります。 INPUT 対象物の画像 デプス画像 AIシステム AI画像解析 3Dデータ処理 OUTPUT アームによる吸着・把持 ティーチングでは難しい職人技を高度数学技術で実装 他の誰にも再現できない技を持つ方、いわゆる「神の手」の技術をArithmer Roboの再現力で実装できることが実証されています。 INPUT 人の動作をモーションセンサーで取得 AIシステム 動作解析 3Dデータ処理 OUTPUT 動作をロボットで再現 ※画像はイメージです 導入事例 ※画像はイメージです 株式会社デンソーウェーブ様 人が行っていた細かな繰り返し作業をロボットで自動化し、人の負荷を軽減 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら

bottom of page