Search
検索
55件の検索結果が見つかりました
- Arithmer | Privacy
Arithmer株式会社はプライバシーマークを取得しております。 Privacy プライバシーマーク Arithmer株式会社はプライバシーマークを取得しております。 証明書はこちら 事務所 Arithmer 株式会社 事業所 東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 認証機関名 一般財団法人日本データ通信協会 認証登録番号 第21004668(03)号 有効期限日 2024年8月17日~2026年8月16日
- Arithmer × NEC様|本人確認OCR
本人確認書類OCRシステムは様々なプラットフォーム対応はもちろん、高速かつ確実な「本人確認」の実現をサポートします。Arithmer OCR手書き読み取り技術により、免許証裏面や在留許可証の住所変更にも対応しています。 日本電気株式会社様 × Arithmer NECとArithmerの協業で マイナンバー認証サービスの推進とeKYC課題の解決へ × マイナンバー認証の重要性がますます高まる中、NECとArithmerは協力して、マイナンバー認証サービスの推進とeKYCにおける課題解決に向けて取り組んでいます。 従来の課題 従来の本人確認書類OCRは、撮影条件による制約や文字認識精度の低さから、導入後、期待していたほど人による確認作業の手間が減らないという不満がありました。 また、最近では個人情報の流出を防止する仕組みも求められています。 NECの顔照合技術とArithmerのOCR技術により、 窓口の煩雑な業務を大幅に軽減 利便性の向上が期待されるマイナンバーカードの使用に対し、行政機関におけるマイナンバーの制度活用と企業の制度対応に高い専門性を発揮するNECと協業し、AI・ICTなどの技術応用に力を注ぐ取り組みを進めました。 【ArithmerOCRの特長】 DeepLearningを活用した画像認識技術 ArithmerOCRは、DeepLearningを活用した高精度な画像認識技術を用いて照合番号B(14桁:券面に記載された生年月日6桁+有効期限西暦部分4桁+セキュリティコード4桁)を読み取り、入力ミスによるICカードロックを防止、窓口混雑の軽減に貢献します。 安全性の向上 一般的なOCRは、外部サーバーへ券面画像を送信して処理を行います。 ArithmerOCRでは、スマートフォン内で処理を完結するため、券面画像を外部へ送信することなく(※)個人情報を保護します。 【顔照合技術とDigital KYCの連携】 NECの顔照合技術とDigital KYCとの連携により、スマートフォン内で顔写真の対比を行い、前述同様に本人確認書類画像の外部送信を不要(※)とすることでセキュリティリスクを低減します。 ※認証後は確証としてサーバーに送る必要があります。 ArithmerOCR 技術紹介 【さまざまなプラットフォームに対応】 ArithmerOCRは、さまざまなプラットフォームで利用可能であり、高速かつ確実な「本人確認」をサポートします。 スマホライブラリーの例 撮影 Input 本人確認書類 運転免許証/マイナンバーカード 在留カード/パスポート 独自のモデル量子化技術により スマホ内で処理を完結 Output テキストデータ 名前:XXX 住所:YYY 番号:ZZZ データ 本人情報データ ベースクラウドor オンプレサーバ WebAPIの例 Input 画像入力 画像アップロード Output 結果表示 名前:XXX 住所:YYY 番号:ZZZ 結果出力 サービス提供会社 前処理 ArithmerOCR リクエスト 後処理 画像のOCR リクエスト OCR結果返却 大規模ネットワークによる推論 API ArithmerのAI OCRは特許を取得しています 特許6590355 手書きOCRの学習モデル生成装置 特許6804074 顧客先内部学習プログラム 特許6820578 活字文字列認識装置 特許6896260 レイアウト解析装置 特許7086361 帳票情報生成装置 以下は特許出願中です 特願2020-551133 帳票レイアウト解析装置 特願2021-575740 活字文字認識装置 特願2020-119790 文字列認識装置 特願2020-146682 全般技術 特願2020-181945 初期データ登録 プロジェクト一覧へ ソリューションのお問合せはこちら
- AI Agent column5 | Arithmer
AI Agent Column 5 2025.1.30 AI Agent導入の一例 これまでAI Agentの特徴やできることについて解説してきましたが、実際にそれを活用できるようになるまでのイメージがまだ付いていないという方もいらっしゃるかもしれません。そこで今回は、ある会社様に物品輸送を最適化するシステムを導入した時の経験談を書きたいと思います。 その会社様は当時、ある部門が抱える大きな業務において属人的な作業が多く、効率化が求められていました。 その効率化が求められていた業務を簡単に説明すると以下のような流れです: ①集められた情報の精査(不備の確認など) ②条件に基づく交渉 ③複数の選択肢から 「最適な」サービスを選定 最初にこの課題について相談を受けた時点では、その会社様もArithmerも具体的にどのようなデータを入力し、どのような結果を出力するシステムが必要なのか、あるべき姿をまだ掴めていない状況でした。 そこで、まずはコンサルティング的なアプローチで、データの活用方法について先方と議論することからプロジェクトをスタートしました。過去のデータをお借りし、数理的な分析を行うことで、業務の中で暗黙知となっていた重要なポイントを明確化しました。このプロセスは、AIエージェントの文脈で言うと、RAGに必要なデータを選別し、効果的に活用するための基盤を整備する作業です。 次にシステム開発を進めるにあたり、対象とする機能の範囲を絞ることが重要となります。今回のケースでは、上記①〜③に対応する機能のスコープを次のように設定しました。 ①初期段階のデータ精査をシステムで自動化 ②交渉については自動化はせず、交渉のための材料を提供する機能を設ける ③最終的な意思決定は人が行うが、その支援のためにシステムが「レコメンド」をする ここで「レコメンド」とは、入力されたデータを総合的に分析し、その結果をもとに選択肢を比較することを指します。条件が理想的に揃っている場合(例えば、コストが低く、スピードが早く、安全性が高いなど)を最適な選択肢とし、それとは対極の条件を低評価とします。各選択肢には多くの数値データやテキストデータが含まれています。このため、複数の選択肢を分析・比較する際の情報量は非常に膨大になります。従ってこのプロジェクトの中核は、この膨大な情報をいかに効率的に処理し、適切な評価を行う仕組みを実現するかという点でした。 案件ごとにモデルを柔軟に構築・調整できることは、Arithmerの大きな強みです。今回のケースでは、出力されるレコメンドに説明可能性が求められたため、確率論的(Stochastic)なアプローチではなく、決定論的(Deterministic)なモデルを採用しました。これにより、各条件がバランスよく反映されるパラメータ設定を行い、実用性の高いシステムを提供することができました(もちろん、他の案件では確率論的手法や両者を組み合わせたハイブリッドアルゴリズムが有効となる場合もあります)。 現在、このシステムは会社様に継続的にご利用いただいており、大変嬉しい限りです。また、近年のAI技術の進歩により、当初は人が担っていた交渉業務の自動化も実現可能な段階に近づいています。私たちとしても、このシステムのさらなる発展が非常に楽しみであり、引き続き改良を重ねていきたいと考えています。 ―――― 次回は、これから AI Agent の導入を検討しようという方々に向けて、検討すべきことやそのステップについて整理していきたいと思います。お楽しみに! 前の記事へ AIエージェントページへ 次の記事へ
- お問い合わせ | 数学とAIで社会課題を解決するArithmer
Arithmerでは7領域においてAIシステムを導入しています。一気通貫の対応力でお客様の課題解決に貢献いたします。 Contact お問い合わせ 当サイトでは実在性の証明とプライバシー保護のため、SSLサーバ証明書を使用し、SSL暗号化通信を実現しています。 お気軽にお問い合わせください。 1営業日以内にご連絡いたします。 オプションを選択 * サービス詳細のお問い合わせ その他(詳細は下記にお願いします) 広報について 採用について 採用ページはこちら 会社名 メールアドレス 名前 電話番号 お問い合わせ内容詳細 メルマガ配信に登録する 個人情報の取り扱いについて同意する 詳細はこちら 送信
- 代表挨拶 | 数学とAIで社会課題を解決するArithmer
数学、科学をいかに応用して、社会課題を解決するのか、そしてHope(希望)へとつなげるのか、それを考えるのが私たちの仕事です。 Message 代表挨拶 現代数学を応用し まだない新しい技術を創造してゆきます 代表取締役社長 兼 CEO 大田佳宏 Arithmer株式会社 代表取締役社長兼CEO 第64回国際数学オリンピック 組織委員会 副委員長 総務省 AIネットワーク社会推進会議 構成員 東京大学大学院数理科学研究科 客員教授 東京大学アイソトープ総合センター 客員教授 一般社団法人日本応用数理学会 代表会員 博士(数理科学)(東京大学) Arithmetic × AI Arithmerは、数学で社会課題を解決する会社です。 算術、数学という意味の“Arithmetic”から名付けました。 数学は簡潔にして美しく、世界を変える力を持っています。 これまでの数学者、科学者、技術者達も、それを証明してきました。 そして現在、私達は現代数学を応用して、さまざまな社会課題を解決するため、新しい高度AIシステムを導入しています。 私達は業界を代表する多くの企業様にArithmerのAIソリューションをお使いいただいている事に感謝をするとともに、その大きな社会的責任もしっかり認識して、よりよい未来のための新しい技術を創造していきたいと思います。 代表取締役社長 兼 CEO 大田佳宏
- 実績一覧 | 数学とAIで社会課題を解決するArithmer
高度数学のビジネス活用を目指し、様々な分野でイノベーションの実現を推進しています。 形式科学である数学、自然科学である物理学など、様々な分野の研究者がシナジーを生み出し、 それらを活用したプロジェクトが同時進行しており、その適応領域は拡大しています。 Solutiuons 事業内容 AIエージェ ン ト ボタン 製造AI ボタン インフラAI ボタン リテールAI ボタン 風力AI ボタン 物流AI ボタン ボタン バイオAI ボタン 浸水AI ボタン
- AI Agent column2 | Arithmer
AI Agent Column 2 2024.12.26 なぜいま、注目されるのか? AI Agentコラムの第1回ではAI Agentというコンセプトそのものをご紹介しました。第2回の本稿では、そのAI Agentがなぜいま、これほど注目を集めているのか、その要因を掘り下げてみたいと思います。 ―――― 3つの要因 前回整理した通り、AI Agentは「自然言語で指示し、タスクを自動実行する」という点で、従来の技術とは一線を画する存在です。では、このAI Agentがなぜいま、これほど注目を集めているのでしょうか? その背景には、次の3つの要因が挙げられます。 1. 技術のブレークスルー AI Agentが注目を高めた最大の要因は、大規模言語モデル (LLM) の飛躍的な進化です。 特に2022年11月にリリースされたGPT-3.5は、対話型アプリのChatGPTと共に普及し、LLMの可能性を人々に知らしめました。さらに2023年3月のGPT-4の登場により、LLMは単にテキストや情報を生成するだけでなく、タスクを理解し、自律的に遂行する「思考力」に近いものを獲得していることが明らかになりました。 例えば、GPT-4は旅行の計画を立てる際に、フライト、宿、食事の手配が必要であることなどを理解して、それぞれのタスクに分解することができます。 従来のAIは事前にルールを与えられた範囲でしか動けませんでしたが、LLMは自然言語での指示を受け、状況に応じた判断を柔軟に行えるようになったのです。これが、AIが「行動する」存在へと進化するブレークスルーとなりました。 2. 環境の整備 次に、このブレークスルーをビジネス活用へとつなげる研究開発の「環境」が整備されたことが挙げられます。 OpenAIなどによるLLM APIの公開や、AWS、Azure、GCPといったクラウドインフラの普及により、個人や企業がAI技術を手軽に利用し、試行錯誤を重ねることが可能になりました。また、LangChainやAuto-GPTといったフレームワークの登場により、LLMと他のツールやシステムを組み合わせたAI Agentのプロトタイプを簡単に構築できるようになってきています。これらの環境・エコシステムの普及が、研究者や開発者の創意工夫を後押しし、AI Agentの実用化を加速させています。 3. ビジネスの期待の高まり 技術と環境が整ったことで、ビジネスの現場でもAI Agentへの期待が急速に高まりました。多くの企業が導入に向けた具体的な検討や計画に着手し、またMicrosoftやSalesforceといった大手テクノロジーベンダーも相次いでAI Agent関連の新機能やサービスを発表しています。これらの動きにより、AI Agentを「未来の技術」から「現実のビジネスチャンス」へと変わり、さらに多くの注目を集めるきっかけとなりました。 これらの要因が重なり、AI Agentは今、生成AIを超える「次なる革新」として注目を集めています。かつてインターネットやスマートフォンが世界を変えたように、AI Agentも私たちの働き方や日常に劇的な変化をもたらすものとなるでしょう。 ―――― 次回の第3回では、実際のところAI Agentで一体何ができるのかを整理してみたいと思います。ぜひご期待ください。 前の記事へ AIエージェントページへ 次の記事へ
- 運転AI | 数学とAIで社会課題を解決するArithmer
AI技術×シミュレーションで圧倒的に速い解析時間を実現します。シミュレーションを行うには、知識や膨大な試行回数が必要になり、結果が出るまで数ヶ月を要することがあります。 私たちの流体予測AIシステムでは、これら課題を解決し、活用場面を広げていきます。 運転AI Drive Support AI 運転支援や空間把握、モニタリングなど、動画解析を日常生活の基盤に 車と人の安心・安全をサポートします。車載カメラ映像の解析による注意喚起や、スマートフォンアプリによるリアルタイムアラートなど、目的や環境に応じたシステムを利用できます。 お問い合わせはこちら こんなお悩みありませんか? 工場内カートや大型トラックの 巻き込みによる接触事故 交通事故(人身事故)発生時の 社会的影響 熟練ドライバーの不足 運転AIはそんなあなたの課題 を解決します 運 転AIの特長 動画解析技術を用いて 危険状態を検知する 車体に取り付けたカメラで車両周辺を監視車両側面や後方を監視し、障害物を検知すると注意を喚起します。 必要最小限のカメラだけで 車体の移動軌跡を測定し 障害物等への接触リスクを判定 カメラの設置台数を最小限にすることでコストの増加を抑え、AI画像解析により車両と人などとの接触リスクを低減します。 若手ドライバーでも安心・安全に運行が可能 危険を察知したらアラートを発信するため、運転経験が少ないドライバーでも安心して運行することができます。 ※画像はイメージです 自動運転システムにおける 予兆保全・異常検知 AGVやフォークリフトなどのシステムと合わせて実装することにより、危険エリアを自動的に調整・監視。接触事故を未然に防ぎます。移動に合わせて監視エリアを自動的に調整します。 INPUT 自動運転シス テムの動画像 AIシステム 自動運転システムとの組み合わせ OUTPUT 異常箇所の通知 安全運転支援システム 飛び出しや巻き込みが起きやすい場所をAIで学習し、事故を抑止します。また、車間距離を感知し、未然に追突事故を抑止します。 INPUT ドライブレコーダーの撮影データ AIシステム 車や二輪車、人、 信号、標識などを 検知 独自のデータを 元にした危険 箇所 の特定 OUTPUT ドライバーへの注意喚起 危険箇所の事前通知 ※画像はイメージです ※画像はイメージです 農業における自動運転開発 農業における人手不足問題を解消し、高い生産性を実現します。 INPUT 準天候衛星シス テム「みちびき」 による現在地の 特定 AIシステム あらかじめ 作成 された 地図デー タ から最適 ルー トを生成 OUTPUT 倉庫から田畑へ 移動 植え付け/収穫 の自動化 導入事例 ※画像はイメージです トヨタ自動車株式会社様 工場内運搬カートの後方安全に関する特許をトヨタ自動車と共同で出願 より詳しく 導入までの流れ ヒアリング 現状についてヒアリングを行い、弊社のソリューションで課題解決できるか確認致します。 要件定義/本契約 カメラの仕様、1日あたりの撮影回数・カメラ台数など運用に必要な条件を確認。その後、見積提出・本契約になります。 システム構築 要件定義に基づきシステム構築を行います。 運用開始 構築したシステムを提供し、お客様にて運用を開始いただきます。安定稼働を目指し、弊社にてアフターサポートを行います。 Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問合せください お問い合わせ
- 代表挨拶 | 数学とAIで社会課題を解決するArithmer
数学、科学をいかに応用して、社会課題を解決するのか、そしてHope(希望)へとつなげるのか、それを考えるのが私たちの仕事です。 Message 代表挨拶 現代数学を応用し まだない新しい技術を創造してゆきます 代表取締役社長 兼 CEO 大田佳宏 Arithmer株式会社 代表取締役社長兼CEO 総務省 AIネットワーク社会推進会議 構成員 東京大学大学院数理科学研究科 客員教授 東京大学アイソトープ総合センター 客員教授 一般社団法人日本応用数理学会 代表会員 博士(数理科学)(東京大学) Arithmetic × AI Arithmerは、数学で社会課題を解決する会社です。 算術、数学という意味の“Arithmetic”から名付けました。 数学は簡潔にして美しく、世界を変える力を持っています。 これまでの数学者、科学者、技術者達も、それを証明してきました。 そして現在、私達は現代数学を応用して、さまざまな社会課題を解決するため、新しい高度AIシステムを導入しています。 私達は業界を代表する多くの企業様にArithmerのAIソリューションをお使いいただいている事に感謝をするとともに、その大きな社会的責任もしっかり認識して、よりよい未来のための新しい技術を創造していきたいと思います。 代表取締役社長 兼 CEO 大田佳宏 メディア掲載 熊本日日新聞に当社の浸水AIの記事が掲載されました 金沢シーサイドFMのラジオ番組に当社代表が出演、YouTubeでアーカイブを公開 モノ・マガジン9.16号に当社の浸水AIが紹介されました メディア掲載一覧へ
- 資料請求 | 数学とAIで社会課題を解決するArithmer
Arithmerでは7領域においてAIシステムを導入しています。一気通貫の対応力でお客様の課題解決に貢献いたします。 Document request 資料請求 当サイトでは実在性の証明とプライバシー保護のため、SSLサーバ証明書を使用し、SSL暗号化通信を実現しています。 ダウンロードしたい資料を選んでください * 必須項目 00. Consulting 01.OCR×LLM 02.浸水AI 03.風力AI 04.Realtime VR 05.Recommend×LLM 06.AMR(⾃律⾛⾏) 07.Vision AI 08.O&M(⼈/設備保全) 09.Robotics 10.Safety AI 会社名 メールアドレス 名前 電話番号 ご質問・ご不明点 メルマガ配信に登録する 個人情報の取り扱いについて同意する 詳細はこちら 送信
- AI Agent column3 | Arithmer
AI Agent Column 3 2025.1.14 AI Agentで何ができるのか? 明けましておめでとうございます。今年も昨年に続いてAI Agentの年になりそうですね! 昨年末のAI Agentコラムの第1回ではAI Agentとは何か、第2回ではなぜいま注目されるのかを紹介しました。そしてこの第3回では、AI Agentに実際に何ができるのか具体的に見ていきたいと思います。 ―――― 代表的な用途 前回のコラムで触れたように、AI Agentは技術の進化や環境の整備、ビジネスの期待のが高まりなどを背景に、様々な領域で活用が進められています。以下に、代表的な用途をいくつかご紹介します。 カスタマーサポート: AI Agentは、カスタマーサポート業務の自動化で顕著な成果を上げています。具体的には、顧客からの技術的な問題や製品の不具合に関する問い合わせに対し、AI Agentが自律的に対応し、問題の特定、解決策の提示、さらには必要に応じて専門スタッフへの切り分け、引継ぎなども行います。 事務作業: 定型的な事務作業を自動化し、業務効率を高めます。例えば、会議の日程調整や終了後の議事録作成を自動で行います。またメール対応も、これまでのやり取りの経緯や、先方の送付資料を要約し、回答案を生成することができます。日常的なタスクをAI Agentが代行することで、従業員がよりクリエイティブな仕事に集中することができます。 データ分析: AI Agentはデータ分析でも利用されています。例えば、マーケティング担当者が『今期売上が最も伸びた商品は何か?』と尋ねると、売上データを解析し商品別成長率を示します。続けて『その商品の売上が伸びた地域は?』と尋ねると、その商品の地域別成長率を示します。こうした対話的なプロセスで、ユーザーの意思決定を支援します。 ソフトウェア開発: AI Agentは、ソフトウェア開発においてコード生成やデバッグ支援、タスクの自動化などに利用されています。例えば、開発者が必要な機能を説明すると、それを基にサンプルコードを生成し、エラーが発生した場合にはエラーメッセージから修正案を提示することができます。また、テストケースの生成や実行の自動化を通じて、品質向上にも貢献しています。 マーケティングコンテンツ作成: SNS投稿やキャンペーン資料の作成を支援します。例えば、新商品の特長を入力すると、それを基にキャッチコピーや投稿文を生成します。また、ターゲット層の説明をもとにその層に訴求するデザイン案や画像の生成も可能です。これにより、マーケティング業務の負担を軽減し、かつ、迅速かつ効果的な施策を実行することができます。 教育: AI Agentはまた、教育分野における個別最適化学習にも使われています。例えば、学習者の進捗を分析し、苦手分野を特定して適切な練習問題を提案します。また、教員向けにはテスト採点や出席管理といった事務作業を自動化し、教育活動に集中できる環境を提供します。 バリエーション豊かなAI Agent このように、AI Agentとひとことで言っても、その役割や適用範囲は非常に幅広いものです。人間の意思決定や創造性を支援することに重きを置くものもあれば、人間の負担を減らすために自動実行に重きを置くものもあります。また、特定の業務に特化したAgentもあれば、幅広い分野で活用できる汎用型のAgentも存在します。 先に挙げた用途の例は、以下のように整理するとわかりやすいでしょう。 このように、AI Agentはさまざまな用途で活用が進んでいます。さらに、AI Agent自身の柔軟性の高さや、多様な試みが世界中で行われていることから、今後ますます広い領域に適用されていくことでしょう。 ―――― 今回はAI Agentの代表的な用途と、その幅広さについてご紹介しました。一方で、AI Agentはまだ万能ではありません。次回の第4回では、AI Agentを実際の業務に適用する際の難しさについてお話ししたいと思います。 ぜひご期待ください。 前の記事へ AIエージェントページへ 次の記事へ
- 風力AI | 数学とAIで社会課題を解決するArithmer
ダウンタイムの発生や、故障・事故による社会的影響、メンテナンス人材の不足など、課題の多い風力発電業界。AIエンジンを駆使して「スマート保安」に貢献します。 Wind Power AI 脱・事後処理 「まさか」を検知し事前 に通知 風車の故障におけるダウンタイムの発生や、故障・事故による社会的影響、メンテナンス人材の不足など、対処すべき課題の多い風力発電業界。 ArithmerはAIによる画像解析技術を用いて「スマート保安」に貢献します。 お問い合わせはこちら 風力AI こんなお悩みありませんか? 発電機故障による ダウンタイムの発生 風力発電の事故における 社会的影響 メンテナンス人材の不足 風力AIはそんなあなたの課題を解決します 風力AIの特長 風力に画像検査のAIを活用 機器異常の予兆を検知します 風力発電のナセル内部にカメラを設置し、常時、画像データを取得します。 常時画像を取得しているので故障に至る前の予兆を発見することができます。 正常状態を学習 あらゆる「異常」を検知します。 計測されたデータがあれば、あとはAI技術とシミュレーションにお任せすることで、 結果の取得が可能となります。 カメラとAIシステムが常に監視 人材不足を解消できます。 カメラから取得した画像データはAIシステムが常に監視するため、人による作業工数を減らすことができ、業務の効率化を図ることができます。 ※画像はイメージです 風力発電設備の 予兆保全・異常検知 月次巡視を、AIによるリアルタイム監視に置き換えて「スマート保安」を実現します。 INPUT 監視カメラ映像 AIシステム 教師なし学習 学習モデルから推論までワンストップ OUTPUT 日次レポート 異常報告レポート 導入事例 ※画像はイメージです 株式会社ユーラスエナジーホールディングス様 カメラを用いた予兆AIが風車の月次巡視を一部代替 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら





