top of page

Search

検索

55件の検索結果が見つかりました

  • 物流AI | 数学とAIで社会課題を解決するArithmer

    倉庫での業務やピッキング業務の効率化、配送ルートの最適化など、”2024年問題”を抱える物流業界の課題について、AIを用いて解決します。 Logistics AI “2024年問題”など、物流業界の諸問題をAIのチカラで解決します ピッキング業務の効率化や配送ルートの最適化などの物流AIソリューションを用いて、物流業界の抱えるさまざまな課題を解決します。 2024年問題とは、働き方改革関連法によって、2024年4月1日以降に自動車運転業務の年間労働時間外労働時間(残業時間)の上限が960時間に制限されることによって発生する問題の総称。 お問い合わせはこちら 物流AI こんなお悩みありませんか? 配送ルートを決定する作業が 属人化してしまっている 配送担当者の毎月のシフト管理に 多くの工数が割かれる 思うように従業員が雇えず、 常に人員不足が続いている 物流AIはそんなあなたの課題を解決します 物流AIの特長 最適な配送ルート計算・作成の 業務の属人化を解消 長年の経験や土地勘が必要だった、ルート作成をAIで。あらゆる制約条件を考慮した上で自動的に最適な配送ルートを提案します。 シフト・人員配置の最適化による 労力の削減 運搬の際の勤務シフト作成・人員配置など、管理者が膨大な時間と労力をかけて実施している作業を肩代わりします。 3Dカメラで特徴を抽出し ロボットでマスターレスピッキング AI画像認識と3D点群処理を用いてキャッチするポイントを正確かつ迅速に伝えることで、さまざまなサイズの商品をマスター登録せずにピッキングします。 ※画像はイメージです 配送ルートの最適化 過去の数値と照らし合わせ各種数値を総合的に解析し、さまざまなビックデータから最適なルートを導き出します。これまで属人化されていたルート作成から解放されます。 INPUT ルート情報 SNSなどの外部情報 AIシステム ビッグデータ解析 OUTPUT 最適配送ルート 最適配送スケジュール 商品自動ピッキングによる 業務効率化 宅配ニーズの高まりを受け、1つのロボットを用いて複数品種の商品の処理を行えるようにすることで、少人数、低コストで大量の注文に対応します。 INPUT 3Dカメラで商品を撮像 AIシステム AI画像認識 3D点群処理 OUTPUT 制御装置に出力 ※画像はイメージです 導入事例 ※画像はイメージです 豊田通商株式会社様 豊田通商株式会社様とArithmerが共同でAIを活用した船会社選定サポートシステムを特許出願 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら

  • ISMS | 数学とAIで社会課題を解決するArithmer

    Arithmer株式会社は情報セキュリティマネジメントシステム認証を取得しております。        ISMS 情報セキュリティマネジメントシステム認証 Arithmer株式会社はISO/IEC 27001:2013 情報セキュリティマネジメントシステム認証(ISMS)を取得しております。 組織名 Arithmer 株式会社 事業所 東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 認証機関名 Intertek 認証登録番号 13668 初回登録日 2020年6月9日 有効期限日 2026年6月8日 認証登録範囲 AI 技術の研究開発及び関連ソリューションの販売、サポート、コンサルティングに関する情報セキュリティの管理 ・研究開発部門 ・事業部門 ・管理部門

  • 会社情報 | 数学とAIで社会課題を解決するArithmer

    Arithmerは、数学で社会課題を解決する会社です。Arithmerという社名は、算術、数学という意味の “Arithmetic” から名付けました。 About Us Arithmerは、数学で社会課題を解決する会社です 会社概要 Arithmerの会社基本情報や沿革、役員体制などの情報をご紹介します。 ボタン 経営理念 Arithmerは、数学で社会課題を解決する会社です。Arithmerという社名は、算術、数学という意味の “Arithmetic” から名付けました。 ボタン 代表挨拶 数学、科学をいかに応用して、社会課題を解決するのか、そしてFuture(未来)へとつなげるのか、それを考えるのが私たちの仕事です。 ボタン アクセス Arithmerは本郷本社、名古屋、大阪、徳島、東京大学に拠点があります。 ボタン スタッフ紹介 Arithmerは東京大学数理科学研究科初となる企業として設立されました。さまざまな専門分野をバックグラウンドに持つエンジニアが活躍しています。 ボタン 役員紹介 Arithmerの取締役の体制、監査役の体制、執行役員の体制をご紹介します。 ボタン

  • AI Agent column10 | Arithmer

    AI Agent Column 10 2025.12.10 AI Agentコラム (10): AI Agent導入 step4 ”計画“ AI Agent導入の4ステップ「理解」「選定」「設計」「計画」。前回(第9回)はステップ3「設計」として、AI Agentを業務に組み込む「to-be」の描き方についてお話しました。 さて、いよいよ最終ステップとなる今回は「(4) 計画 (Plan)」です。設計で描いたto-beの実現に向けた具体的なステップを計画する際に、どのようなことに留意するべきかお話したいと思います。 ―――― AI Agent ならではの注意点 第一に、中核となるLLM(大規模言語モデル)そのものが持つ「御しにくさ」 です。 LLMは確率的に動作するため、同じ指示でも応答が揺らぐことがあり、その思考プロセスは完全には透明ではありません。また、膨大な知識を持つ一方で、特定の業務に必要な専門知識や暗黙知は不足していたり、時には事実に基づかない情報(ハルシネーション)を生成したりすることもあります。さらに、その能力を最大限に引き出すための最適な指示(プロンプト)を見つけること自体が、試行錯誤を要する複雑な作業です。この「御しにくさ」があるため、AI Agentの挙動を完全に予測し、制御することは本質的に困難なのです。 第二に、AI Agentには、単に応答を生成するだけでなく、自律的に「実行を任せる」ことによる特有のリスク が伴う点です。AI Agent が外部ツールと連携したり、システムを操作したり、あるいは顧客と直接やり取りしたりする場合、その「御しにくい」挙動が、ビジネス上あるいは社会的に無視できない影響を直接的に及ぼす可能性があります。従来のAI以上に、そのアクションの結果に対する責任と、安全性をどう担保するかが問われます。 この「LLMの御しにくさ 」と「実行を任せるリスク 」という 2つの大きな特性があるからこそ、事前に全てを完璧に計画することが難しく、次のセクションで述べるような、不確実性を前提とし、リスクを管理しながら、実践を通じて学習・適応していくための特別な計画上の配慮が不可欠となります。 1. 不完全であることを前提に計画する まず大前提として、AI Agentは導入初期において「不完全」であることを受け入れなければなりません。LLM の確率的な性質や学習データの限界、そして私たちがまだ知らない未知の挙動などにより、事前にすべてのケースを想定し、完璧な準備を整えることは不可能です。 したがって、計画においては「完璧な状態でのリリース」をゴールとするのではなく、「不完全な状態から安全に学び、成長させていくプロセス」そのものをデザインする必要があります。 そのための具体的なアプローチが「スモールスタート」です。これは、リスクを最小限に抑えつつ、早期に現実世界でのフィードバックを得て学習するための極めて有効な戦略です。計画段階で、「どこまで小さく始めるか」を具体的に定義します。 意図的にリスクを限定した「練習環境」を計画的に用意し、その中で AI Agentを動かし、挙動を観察し、改善していく。そして、スモールスタートから得られる様々なフィードバック(AIの挙動、ユーザーの声、業務影響など)を意図的に収集し、分析し、それを次のイテレーション(反復)の計画に迅速に反映させるループを計画に組み込むことが重要です。 従来のウォーターフォール型計画のように、一度立てた計画に固執するのではなく、実践からの学びに基づいて計画自体を柔軟に見直し、適応させていく。このアジャイル的な進め方こそが、不完全で予測不能な AI Agentと共に歩むための現実的なアプローチです。 2. リスクの取り方を計画する AI Agentの自律性を本当に活用するには、ある程度の「リスク」を取って実行を任せる場面も出てきます。しかし、最初からすべてを委ねるのは危険です。そこで重要になるのが、リスクをコントロールしながら段階的に適用範囲や権限を広げていく計画です。 計画段階で、AI Agentに任せる機能、アクセスできるデータ、実行可能なアクションなどを、どのようにステップを踏んで拡大していくかのロードマップを具体的に描きましょう。そして最も重要なのは、各ステップにおいて「許容できるリスクはどこまでか」「何を達成できれば次のステップに進めるのか」という客観的な基準(例えば、特定のタスクにおける成功率、エラー発生頻度、人間の修正頻度など)を事前に明確に定義し、関係者間で合意しておくことです。 特に、導入初期に安全策として設けることが多い「人間による判断・介入」プロセスは、あくまで AI Agentを育成するための「補助輪」と捉える視点が大切です。その補助輪をいつ、どのような状態になったら取り外すのか、その移行プロセスと判断基準を計画に明記しておかないと、人間によるチェックが恒久化し、結果的に AI Agentの自律性を十分に引き出せないままになってしまう可能性があります。必要なリスクは取り、不要なリスクは取らない、長期視点での合理的な判断が求められます。 3. 問題発生時の対応を計画する AI Agent の導入計画においては、残念ながら問題が起こることを避けられない前提として捉える必要があります。その確率的で複合的な性質上、予期せぬ挙動やエラー、あるいは期待通りの結果が出ないといった事態は必ず発生し得ます。重要なのは、発生をゼロにすることではなく、発生した場合にいかに迅速かつ柔軟に対応し、さらにそれを次に活かすかを計画しておくことです。 計画には、まず問題を早期に検知するためのモニタリング体制(ログ収集・分析、異常検知アラートなど)の整備を含めるべきです。AI Agent は原因特定が難しい場合も多いため、迅速な状況把握と影響範囲の特定、そして必要に応じた暫定的な対処(関連機能の一時停止、人間による代替処理など)と、その後の恒久的な対策に繋げるプロセスを定めておくことが有効です。 さらに強調したいのは、発生した問題を単なる「障害」として処理するのではなく、AI Agentと組織全体の「学習機会」と捉える視点です。問題発生時の状況、原因(推定でも構いません)、対処内容とその結果といった情報を構造化されたデータとして記録・蓄積する仕組みを作りましょう。この「失敗からの学び」を分析し、AI Agent 自体の改善や、運用プロセスの見直しに繋げていくフィードバックループを回すこと。これこそが、AI Agentを継続的に進化させるエンジンになります。 ―――― 今回は、導入の最後のステップ「計画」についてお話ししました。 そして本コラム『AI Agentコラム』は、この第10回をもちまして最終回となります。 長きにわたりご愛読いただき、誠にありがとうございました。 この連載では、まず AI Agentとは何かという基本的な概念から始め、その適用範囲、課題、実際のユースケースをご紹介しました。第 6回からは導入プロセスを「理解」「選定」「設計」「計画」という4つのステップに分けて、それぞれの実践面での注意点を掘り下げてまいりました。 私たちが一貫してお伝えしたかったのは、AI Agentが秘める大きな可能性と、それに伴う固有の難しさ、特にその「不確実性」とどう向き合うか、という点です。 本コラムでご紹介した考え方やアプローチが、皆様それぞれの挑戦におけるヒントとなれば大変嬉しく思います。AI Agentを取り巻く世界は、これからも急速に変化していくでしょう。私たち Arithmerが、その道のりを共に考え、歩むパートナーとして、少しでもお役に立てることがあれば幸いです。 改めまして、全10回の連載にお付き合いいただきましたこと、心より感謝申し上げます。 前の記事へ AIエージェントページへ

  • 代表挨拶 | 数学とAIで社会課題を解決するArithmer

    数学、科学をいかに応用して、社会課題を解決するのか、そしてHope(希望)へとつなげるのか、それを考えるのが私たちの仕事です。 Message 代表挨拶 現代数学を応用し まだない新しい技術を創造してゆきます 代表取締役社長 兼 CEO 大田佳宏 Arithmer株式会社 代表取締役社長兼CEO 第64回国際数学オリンピック 組織委員会 副委員長 総務省 AIネットワーク社会推進会議 構成員 東京大学大学院数理科学研究科 客員教授 東京大学アイソトープ総合センター 客員教授 一般社団法人日本応用数理学会 代表会員 博士(数理科学)(東京大学) Arithmetic × AI Arithmerは、数学で社会課題を解決する会社です。 算術、数学という意味の“Arithmetic”から名付けました。 数学は簡潔にして美しく、世界を変える力を持っています。 これまでの数学者、科学者、技術者達も、それを証明してきました。 そして現在、私達は現代数学を応用して、さまざまな社会課題を解決するため、新しい高度AIシステムを導入しています。 私達は業界を代表する多くの企業様にArithmerのAIソリューションをお使いいただいている事に感謝をするとともに、その大きな社会的責任もしっかり認識して、よりよい未来のための新しい技術を創造していきたいと思います。 代表取締役社長 兼 CEO 大田佳宏

  • Arithmer × NEC様|本人確認OCR

    本人確認書類OCRシステムは様々なプラットフォーム対応はもちろん、高速かつ確実な「本人確認」の実現をサポートします。Arithmer OCR手書き読み取り技術により、免許証裏面や在留許可証の住所変更にも対応しています。 日本電気株式会社様 × Arithmer NECとArithmerの協業で マイナンバー認証サービスの推進とeKYC課題の解決へ × マイナンバー認証の重要性がますます高まる中、NECとArithmerは協力して、マイナンバー認証サービスの推進とeKYCにおける課題解決に向けて取り組んでいます。 従来の課題 従来の本人確認書類OCRは、撮影条件による制約や文字認識精度の低さから、導入後、期待していたほど人による確認作業の手間が減らないという不満がありました。 また、最近では個人情報の流出を防止する仕組みも求められています。 NECの顔照合技術とArithmerのOCR技術により、 窓口の煩雑な業務を大幅に軽減 利便性の向上が期待されるマイナンバーカードの使用に対し、行政機関におけるマイナンバーの制度活用と企業の制度対応に高い専門性を発揮するNECと協業し、AI・ICTなどの技術応用に力を注ぐ取り組みを進めました。 【ArithmerOCRの特長】 DeepLearningを活用した画像認識技術 ArithmerOCRは、DeepLearningを活用した高精度な画像認識技術を用いて照合番号B(14桁:券面に記載された生年月日6桁+有効期限西暦部分4桁+セキュリティコード4桁)を読み取り、入力ミスによるICカードロックを防止、窓口混雑の軽減に貢献します。 安全性の向上 一般的なOCRは、外部サーバーへ券面画像を送信して処理を行います。 ArithmerOCRでは、スマートフォン内で処理を完結するため、券面画像を外部へ送信することなく(※)個人情報を保護します。 【顔照合技術とDigital KYCの連携】 NECの顔照合技術とDigital KYCとの連携により、スマートフォン内で顔写真の対比を行い、前述同様に本人確認書類画像の外部送信を不要(※)とすることでセキュリティリスクを低減します。 ※認証後は確証としてサーバーに送る必要があります。 ArithmerOCR 技術紹介 【さまざまなプラットフォームに対応】 ArithmerOCRは、さまざまなプラットフォームで利用可能であり、高速かつ確実な「本人確認」をサポートします。 スマホライブラリーの例 撮影 Input 本人確認書類 運転免許証/マイナンバーカード 在留カード/パスポート 独自のモデル量子化技術により スマホ内で処理を完結 Output テキストデータ 名前:XXX 住所:YYY 番号:ZZZ データ 本人情報データ ベースクラウドor オンプレサーバ WebAPIの例 Input 画像入力 画像アップロード Output 結果表示 名前:XXX 住所:YYY 番号:ZZZ 結果出力 サービス提供会社 前処理 ArithmerOCR リクエスト 後処理 画像のOCR リクエスト OCR結果返却 大規模ネットワークによる推論 API ArithmerのAI OCRは特許を取得しています 特許6590355 手書きOCRの学習モデル生成装置 特許6804074 顧客先内部学習プログラム 特許6820578 活字文字列認識装置 特許6896260 レイアウト解析装置 特許7086361 帳票情報生成装置 以下は特許出願中です 特願2020-551133 帳票レイアウト解析装置 特願2021-575740 活字文字認識装置 特願2020-119790 文字列認識装置 特願2020-146682 全般技術 特願2020-181945 初期データ登録 プロジェクト一覧へ ソリューションのお問合せはこちら

  • Arithmer | Privacy

    Arithmer株式会社はプライバシーマークを取得しております。                    Privacy プライバシーマーク Arithmer株式会社はプライバシーマークを取得しております。 証明書はこちら 事務所 Arithmer 株式会社 事業所 東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 認証機関名 一般財団法人日本データ通信協会 認証登録番号 第21004668(03)号 有効期限日 2024年8月17日~2026年8月16日

  • AI Agent column5 | Arithmer

    AI Agent Column 5 2025.1.30 AI Agent導入の一例 これまでAI Agentの特徴やできることについて解説してきましたが、実際にそれを活用できるようになるまでのイメージがまだ付いていないという方もいらっしゃるかもしれません。そこで今回は、ある会社様に物品輸送を最適化するシステムを導入した時の経験談を書きたいと思います。 その会社様は当時、ある部門が抱える大きな業務において属人的な作業が多く、効率化が求められていました。 その効率化が求められていた業務を簡単に説明すると以下のような流れです: ①集められた情報の精査(不備の確認など) ②条件に基づく交渉 ③複数の選択肢から 「最適な」サービスを選定 最初にこの課題について相談を受けた時点では、その会社様もArithmerも具体的にどのようなデータを入力し、どのような結果を出力するシステムが必要なのか、あるべき姿をまだ掴めていない状況でした。 そこで、まずはコンサルティング的なアプローチで、データの活用方法について先方と議論することからプロジェクトをスタートしました。過去のデータをお借りし、数理的な分析を行うことで、業務の中で暗黙知となっていた重要なポイントを明確化しました。このプロセスは、AIエージェントの文脈で言うと、RAGに必要なデータを選別し、効果的に活用するための基盤を整備する作業です。 次にシステム開発を進めるにあたり、対象とする機能の範囲を絞ることが重要となります。今回のケースでは、上記①〜③に対応する機能のスコープを次のように設定しました。 ①初期段階のデータ精査をシステムで自動化 ②交渉については自動化はせず、交渉のための材料を提供する機能を設ける ③最終的な意思決定は人が行うが、その支援のためにシステムが「レコメンド」をする ここで「レコメンド」とは、入力されたデータを総合的に分析し、その結果をもとに選択肢を比較することを指します。条件が理想的に揃っている場合(例えば、コストが低く、スピードが早く、安全性が高いなど)を最適な選択肢とし、それとは対極の条件を低評価とします。各選択肢には多くの数値データやテキストデータが含まれています。このため、複数の選択肢を分析・比較する際の情報量は非常に膨大になります。従ってこのプロジェクトの中核は、この膨大な情報をいかに効率的に処理し、適切な評価を行う仕組みを実現するかという点でした。 案件ごとにモデルを柔軟に構築・調整できることは、Arithmerの大きな強みです。今回のケースでは、出力されるレコメンドに説明可能性が求められたため、確率論的(Stochastic)なアプローチではなく、決定論的(Deterministic)なモデルを採用しました。これにより、各条件がバランスよく反映されるパラメータ設定を行い、実用性の高いシステムを提供することができました(もちろん、他の案件では確率論的手法や両者を組み合わせたハイブリッドアルゴリズムが有効となる場合もあります)。 現在、このシステムは会社様に継続的にご利用いただいており、大変嬉しい限りです。また、近年のAI技術の進歩により、当初は人が担っていた交渉業務の自動化も実現可能な段階に近づいています。私たちとしても、このシステムのさらなる発展が非常に楽しみであり、引き続き改良を重ねていきたいと考えています。 ―――― 次回は、これから AI Agent の導入を検討しようという方々に向けて、検討すべきことやそのステップについて整理していきたいと思います。お楽しみに! 前の記事へ AIエージェントページへ 次の記事へ

  • ファッションレコメンド・バーチャルフィッティング | 数学とAIで社会課題を解決するArithmer

    Arihtmer独自の技術の最適化レコメンドで顧客属性データ・購買データなど数万のデータから完全パーソナライズされたファッションを提案。バーチャルフィッティング機能でサイズ感や着用イメージをビジュアル化し顧客満足向上へ。 ファッションレコメンド / バーチャルフィッティング 最適化レコメンドとバーチャルフィッティングで、 最適化レコメンドで顧客属性データ・購買データなど数万のデータから完全パーソナライズされたファッションを提案。バーチャルフィッティング機能でサイズ感や着用イメージをビジュアル化し顧客満足向上、競合との差別化へ。 ユーザー1人ひとりに寄り添ったコンシェルジュ型ECサイトを お問い合わせはこちら こんなお悩みありませんか? 実店舗に来店した時のように、 ショッピングの楽しさや体験を ECサイトで提供することが難しい… ECサイトではユーザーの ニーズを組み取ったコーディネイトのアドバイス、接客がおこなえない… ECサイトの課題であるサイズ感や試着感、生地感を提供することは 困難で、返品が多い… ファッションレコメンド・バーチャルフィッティングで 課題を解決できます ユーザーに新しいショッピング体験・楽しさを提供可能 実店舗ではある「お買い物の楽しさ」をファッションレコメンドでECサイトで提供できます。新感覚のユーザー体験として他社とのECサイトとの差別化が可能です。 数万のデータからユーザーの ニーズ合った商品をレコメンド 購買/来店履歴などを元にユーザーの趣味趣向をAIが学習し、店頭の販売員しかできなかったコーディネイトを、アプリ上で実現。パーソナライズされたファッションを提供する事で購買点数、購買単価アップが可能です。 着せ替えでサイズ感や試着 イメージ、生地感を提供可能 バーチャルフィティングによりユーザー自身が着用しているイメージを提供。また、数多くの試着パターンを提示することが可能となり、サイズ不一致や着用時の違和感による返品の減少が期待できます。 Fashion recommend 4 Big data x 3 AI algorithmによって実現する、個人の嗜好に合わせたレコメンド ファッションレコメンドシステムの特長 3つのAIエンジン 「AIデリバリー」「AIコーディネイト」「セレクトレンズ」 が店頭の気の利いた接客と 同じように、ユーザー1人ひとりに寄り添ったベストなレコメンデーション 体験を提供します。 ・リアルタイムトレンドデータ ・顧客属性データ ・アプリ上のデモグラフィックデータ ・2.4億以上のコーディネイトデータ × ・AIエージェントエンジン ・AIプロファイリングエンジン ・AIレコメンドコアエンジン 1. 一人ひとりの個性に合わせた商品レコメンデ―ション「AIデリバリー」 2. 一人ひとりの個性に合わせた自分専用のコーディネイトレコメンデ―ション「AIコーディネイト」 3. AIがユーザーの探し物を一緒に見つけてくれる「セレクトレンズ」 Output Input 1:社内情報 顧客データ、 採寸データ 自動採寸 2:社外情報 AI Agent自動収集データ レコメンドエンジン 最適化エンジンコア部 カスタマイズ 時系列解析 グラフ理論 量子アルゴリズム変換 統合データベース パーソナルプロファイル 追加学習エンジン プロファイルをアップデート AIコーディネイト 購入点数アップ AIデリバリー 購入単価アップ 3:画像 気になる商品の画像 セレクトレンズ 類似画像検索エンジン 商品情報 画像 似ている商品の画像を提案 ファッションレコメンド機能紹介/導入事例 株式会社コナカ様 SUIT SELECT SUIT SELECTの完全パーソナライズドAIレコメンデーション「AI Coordinate レコメンドアプリ」を開発 Arithmerの開発した「AIエージェント」が24時間SNSをモニタリングし、個人を特定しない形で世代などの属性に応じたリアルタイムトレンドを把握します。「AIプロファイリングエンジン」が、SUIT SELECT保有の数百万人の顧客属性データ・購買データ、アプリユーザーのデモグラフィックデータとあわせて解析することで、顧客のパーソナルプロファイルをよりリッチなものにします。 AIデリバリー ユーザー1人ひとりに、最適なアイテムを最適なタイミングでお届け 4つのデータをミックス: 1.「アクティブユーザー数百万人の顧客属性データと購買データ」 2.最新の第一次情報として「SNSを24時間クロールして解析・構造化したデータ」 3.アプリユーザーの「デモグラフィックデータ」 4.スタッフが構築した「2億4,752万通りのコーディネイトパターンデータ」 このビッグデータを、複数の数理的手法を組み合わせて構築した、独自アルゴリズムを搭載した以下3つのエンジンが解析 AIコーディネイト ユーザー専属のAIパーソナルスタイリスト ユーザーが選ぶのは、お気に入りの1アイテムのみ。後はAIにお任せする事でアプリが、ユーザー専属のAIパーソナルスタイリストになります。 スーツセレクトの保持する購買情報・アプリユーザーのデモグラフィックデータ・SNSから取得したトレンド・人気の着こなし・人間が感じる気候などから、AIがコーディネイトの最適解を導きます。実に2億通り以上のパターンの中からおすすめしています。AIはこの匠の技を学習し、同じことをアプリで再現しています。 セレクトレンズ アイテム総在庫約10,000点の中から、ユーザーが探し求めていたアイテムをAIが自動で見つけだします。 ユーザー自身が気になるアイテムをスマホで写真に撮るだけ。お気に入りに登録すれば、AIコーディネイトが楽しめユーザーの探し求めていたものをレコメンドできます。セレクトレンズには、全国190店舗、約1,000人のスタッフによる学習データをインプット。 学習データのインプットは1度だけでなく、継続的に実施。今この瞬間もセレクトレンズの精度は向上し続けています。 More Virtual Fitting バーチャル試着で サイズ感や試着イメージで顧客満足度向上に バーチャルフィッティングの特長 バーチャルフィッティングでECサイトの課題である「サイズ不一致」「試着感」「生地感」など 「着用時の違和感による返品」の減少へ の貢献が期待できます 【バーシャルフィッティング機能】ユーザーが自分で選ぶファッション + 自動採寸AIシステム 「自動採寸AIシステム」 を組み合わせる事によってより詳細な正確なサイズ感を スマホ1つで時間、場所によらず得ることができます。 自動採寸AIシステム詳細はこちら + VSR(バーチャルショールーム) 店舗をデジタル空間として丸ごと動画で再現。自由に巡回できる360度視点移動が可能となった事で どんな場所も容易に入れ様々な動作を臨場感あふれるバーチャル空間で、場所や時間の制約されないDX化を迅速に導入をサポート 導入までの流れ お問合せ/ヒアリング 貴社の目的や課題感についてヒアリングします。(WEB会議 or ご訪問) ご提案 ヒアリングした内容を基にアプローチ方法をご提案致します。 ご契約 合意したご提案内容を基に、契約を行います 構築開始 構築を行う、要件定義から開始致します。 ファッションレコメンド・バーチャルフィッティングは様々な業界業種で応用できます パーソナルスタイリストとして ユニフォームなどの制作イメージに オーダースーツ業界に ファッションレコメンドでユーザーの「ファッションを楽しむ」新感覚のEC体験を。 バーチャルフィッティングで「着用時の違和感による返品」の減少へ 様々な業界、業種に応用できます。まずはお気軽にお問合せください お問合せはこちら

  • お問い合わせ | 数学とAIで社会課題を解決するArithmer

    Arithmerでは7領域においてAIシステムを導入しています。一気通貫の対応力でお客様の課題解決に貢献いたします。 Contact お問い合わせ 当サイトでは実在性の証明とプライバシー保護のため、SSLサーバ証明書を使用し、SSL暗号化通信を実現しています。 お気軽にお問い合わせください。 1営業日以内にご連絡いたします。 オプションを選択 * サービス詳細のお問い合わせ その他(詳細は下記にお願いします) 広報について 採用について 採用ページはこちら 会社名 メールアドレス 名前 電話番号 お問い合わせ内容詳細 メルマガ配信に登録する 個人情報の取り扱いについて同意する 詳細はこちら 送信

  • Arithmer株式会社 | 数学とAIで社会課題を解決する

    Arithmer(アリスマー)株式会社は、数学で社会課題を解決することをミッションとし、顧客とパートナーのDX化に寄り添うAI開発会社です。AIエージェント、浸水AI、予兆AIなどさまざまなソリューションを提供します。 ARITHMETICS FOCUSES ON SOCIAL CHALLENGES. ARITHMETICS FOCUSES ON SOCIAL CHALLENGES. ARITHMETICS FOCUSES ON SOCIAL CHALLENGES. ARITHMETICS FOCUSES ON SOCIAL CHALLENGES. 数学で社会課題を解決す る。 News CPAラーニングにAIエージェントを提供 ニュースリリース 4 時間前 年末年始の休業に関するお知らせ 24 時間前 戸田建設に危険検知AIシステムを提供 ニュースリリース 10月27日 当社の新ビジョン・新バリューを制定しました ニュースリリース 10月15日 熊本日日新聞に当社の浸水AIの記事が掲載されました 社長インタビュー 9月29日 お知らせ ニュース一覧へ 事業内容 Solutions AIエージェント ボタン 製造AI ボタン インフラAI ボタン リテールAI ボタン 風力AI ボタン 物流AI ボタン ボタン バイオAI ボタン 浸水AI ボタン 主な取引先 ※正式にロゴ掲載許可をいただいたお取引先様のみアルファベット順に掲載しております。

  • AI Agent column7 | Arithmer

    AI Agent Column 7 2025.6.3 AI Agent導入step1 “理解” こんにちは。ArithmerのAI Agent担当コンサルタントです。 AI Agent コラム、大分、時間が経ってしまいましたが、前回(第6回)は導入プロセスの全体像として4つのステップ「(1)理解」「(2)選定」「(3)設計」「(4)計画」をご紹介しました。AI Agentという新しい技術を使いこなし、ビジネス価値に繋げるためには、このステップを順に踏むことが重要です。 今回はその最初のステップの「(1) 理解」について掘り下げていきたいと思います。 ―――― 理解すべきこと 「ITとAIとの違い」についてはもうよくご存じの方も多いと思います。 では「従来のAIとAI Agentとの違い」について特に理解しなければいけないこととは一体何でしょうか? 従来のAIの適用は「教師あり学習」を業務に当てはめることがメインでした。特に分類や回帰といったタスクに取り組む教師あり学習では、「解きたい問題」に対して探索すべき変数は、主に「データ(前処理含む)」「アルゴリズム(モデル選択)」「ハイパーパラメータ」の組み合わせでした。もちろん、これも試行錯誤は必要でしたが、交差検証やグリッドサーチ、ベイズ最適化といった体系的な方法論がある程度存在し、探索空間の構造もある程度は見え、「どう頑張れば精度が上がりそうか」「どこが限界か」の見極めも、比較的、道筋が見えやすかったと言えます。これは言ってみれば、地図がある土地での探索に例えることができるでしょう。 ところが、AI Agentの世界は根本的に異なります。まず中核エンジンであるLLMのプロンプト調整だけでも、探索空間は、その構造も非常に複雑で、広さも膨大です。 それに加えて、他の部品(RAGの設定、ツールの種類と使い方、推論プロセスなど)との無数の組み合わせ方や、それぞれの調整項目が掛け合わさることで、全体の探索空間は文字通り爆発的に増大します。つまりAI Agentの活用は、未知の世界での探索に例えることができます。 この「質的にも量的にも桁違いに広大で、確立された方法論がない探索空間」をどう進むか、それが現在のAI Agentにおける大きな挑戦であり、導入を検討する上で理解しておくべきことの核心です。 理解するためのお薦めステップ この「リアルな難しさ」を前にして、私たちはどうすればAI Agentを本当に理解し、その可能性と限界を見極める実践的な感覚を身につけることができるのでしょうか? それは、「座学」、「実践」、「議論」という、一見シンプルに見えるサイクルを回すことに尽きると、私たちは考えています。 座学 : 書籍・論文・記事の調査や講座の受講などにより、知識を習得する 実践 : ChatGPTなどを介して、AI Agentの中核のLLMの能力を体感する 議論 : ①、②で得た気づきを言語化・共有し、チームとしての共通認識を築く 特にポイントとなるのが3番目のステップです。 知識の習得(①座学)や能力の体感(②実践)に、この言語化・共有(③議論)を加えることで、初めて以下のような価値が生まれます。 個人の理解が深まる : 自分の言葉で説明しようとすることで、曖昧だった理解が明確になり、思考が整理されます(暗黙知→形式知)。 客観性と多角的な視点が得られる : チームで共有し議論することで、「そういう見方もあるのか」「そのリスクは考えていなかった」といった多様なフィードバックやインプットが得られ、一人では気づけなかった偏りや盲点が修正されます(集合知の活用)。 組織としての前進が可能になる : 共通の言葉で議論し、認識を合わせることで、チームや組織として「何を理解し、次に何をすべきか」という合意形成ができ、具体的な計画や意思決定に繋げることができます。個人の学びが組織の力に変わるのです。 これが、私たちが「座学 」「実践 」に加えて「議論 」という3つ目のステップをお勧めする理由です。 ―――― さて、次回(第8回)は、いよいよステップ2「選定」です。AI Agentの強みを活かせる業務を具体的にどのように見極めていくのか、そのプロセスと評価のポイントについて詳しく解説していきます。ぜひご期待ください。 前の記事へ AIエージェントページへ 次の記事へ

bottom of page