Search
検索
55件の検索結果が見つかりました
- 風力AI | 数学とAIで社会課題を解決するArithmer
ダウンタイムの発生や、故障・事故による社会的影響、メンテナンス人材の不足など、課題の多い風力発電業界。AIエンジンを駆使して「スマート保安」に貢献します。 Wind Power AI 脱・事後処理 「まさか」を検知し事前に通知 風車の故障におけるダウンタイムの発生や、故障・事故による社会的影響、メンテナンス人材の不足など、対処すべき課題の多い風力発電業界。 ArithmerはAIによる画像解析技術を用いて「スマート保安」に貢献します。 お問い合わせはこちら 風力AI こんなお悩みありませんか? 発電機故障による ダウンタイムの発生 風力発電の事故における 社会的影響 メンテナンス人材の不足 風力AIはそんなあなたの課題を解決します 風力AIの特長 風力に画像検査のAIを活用 機器異常の予兆を検知します 風力発電のナセル内部にカメラを設置し、常時、画像データを取得します。 常時画像を取得しているので故障に至る前の予兆を発見することができます。 正常状態を学習 あらゆる「異常」を検知します。 計測されたデータがあれば、あとはAI技術とシミュレーションにお任せすることで、 結果の取得が可能となります。 カメラとAIシステムが常に監視 人材不足を解消できます。 カメラから取得した画像データはAIシステムが常に監視するため、人による作業工数を減らすことができ、業務の効率化を図ることができます。 ※画像はイメージです 風力発電設備の 予兆保全・異常検知 月次巡視を、AIによるリアルタイム監視に置き換えて「スマート保安」を実現します。 INPUT 監視カメラ映像 AIシステム 教師なし学習 学習モデルから推論までワンストップ OUTPUT 日次レポート 異常報告レポート 導入事例 ※画像はイメージです 株式会社ユーラスエナジーホールディングス様 カメラを用いた予兆AIが風車の月次巡視を一部代替 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら
- 役員紹介 | 数学とAIで社会課題を解決するArithmer
Arithmer株式会社の役員のご紹介 Leadership 役員紹介 数学で社会課題を解決する 代表取締役社長 兼 CEO 大田 佳 宏 ≫代表挨拶はこ ちら Arithmer株式会社 代表取 締役社長 兼 CEO 総務省 AIネットワーク社会推進会議 構成員 東京大学大学院数理科学研究科 客員教授 東京大学アイソトープ総合センター 客員教授 一般社団法人日本応用数理学会 代表会員 博士(数理科学)(東京大学) 取締役 常務執行役員 兼 CFO 経営管理本部長 乾 隆一 Arithmer株式会社 取締役 常務執行役員 兼 CFO 経営管理本部長 取締役 執行役員 研究開発本部長 森 雅巳 Arithmer株式会社 取締役 執行役員 研究開発本部長 社外取締役 取締役(社外) アライドアーキテクツ㈱取締役ファウンダー 中村 壮秀 取締役(社外) ㈱フォース・マーケティングアンドマネージメント 代表取締役社長(アスクル㈱創業者) 岩田 彰一郎 監査役 常勤監査役 星野 義雄 社外監査役 高岡 彰治 監査役 落合 孝文 アドバイザー 坪井 俊 東京大学大学院 数理科学研究科 名誉教授 武蔵野大学 工学部数理工学科 特任教授 元・社団法人日本数学会 理事長 米村 敏朗 第87代警視総監 第17・18代内閣危機管理監 東京オリンピック・パラリンピック競技大会組織委員会CSO 丸尾 浩一 株式会社Major7th 代表取締役社長 元・大和証券株式会社 専務取締役 下別府 俊也 三井住友信託銀行株式会社 元専務執行役員 執行役員・フェロー 常務執行役員 乾 隆一 執行役員 森 雅巳 フェロー 有田 親史
- AI Agent column4 | Arithmer
AI Agent Column 4 2025.1.21 AI Agent 導入の難しさ 前回までのコラムでは、AI Agentの可能性と活用事例について紹介してきました。確かにAI Agentはさまざまな分野で期待されていますが、実際に業務に適用するとなると、いくつか課題があります。今回は、AI Agentを導入する際に直面する代表的な難しさについてお話しします。 ―――― AI Agentは非常に可能性に満ちたツールですが、活用するには越えなければならないいくつかのハードルがあります。具体的には、以下の5つの点で注意が必要です。 1. 不確実性への対処 前回のコラムでも触れたように、AI Agentはしばしば、業務の一部を自動化し、直接「実行」する役割を期待されます。例えば請求書の処理や顧客対応などのタスクです。しかし、AIの中核を成すLLM(大規模言語モデル)やDL(ディープラーニング)は、その性質上「確率的(stochastic)」、つまり出力が不確実で予測しにくいという特徴を持っているため、実行の場面では課題となります。 精度の問題: AIが100回中99回正しく動作しても、1回のミスが重大な結果を招く場面では使用が難しい場合があります。たとえば、請求書で一度でも誤った金額を計算すると、顧客の信頼を損なう可能性があります。 ハルシネーション: AIが存在しない情報を生成してしまうことがあります。たとえば、製品のマニュアルに載っていない解決方法をでっち上げる可能性もあります。 再現性の欠如: 同じ質問をしても、異なる回答が返ってくる場合があります。業務では、結果が一定であることが求められるため、この特性が問題となります。 このような不確実性は、AI Agentに「実行」を任せる上で大きな障壁となります。 2. ドメイン知識とのインテグレーション AI Agentは LLMの持つ汎用的な知識に基づいてタスクを処理することができます。たとえば、旅行の計画を立てたり、メールの文案を作成したりと、さまざまな用途に対応できます。これは、インターネット上の膨大なデータから学んでいるからです。しかし、ドメイン知識が必要な業務を AI Agentに行わせるのは、簡単ではありません。 ドメイン知識の必要な業務: 例えば医療記録を扱う業務では、LLMは一般的な医学知識は持っていますが、病院ごとに異なる記録形式や略語には対応できない場合があります。 また、自社サービスのサポートデスクでは、LLMは一般的なPC・OS・ネットワークなどに関する知識は持っていますが、自社サービス固有の技術情報が必要な問題には対応できない場合があります。 業務特有の知識を与える方法の一つとして、 RA G ( Retrieval-Augmented Generation ) という仕組みがあります。この仕組みでは、関連する情報を事前に収集しておくことで、それを利用してLLMの知識を補完することができます。しかし、このRAGも導入するだけで自動的に効果を発揮するものではありません。場合によっては、ドメイン知識に過剰に適合することで、もともと持っていた汎用知識・能力が損なわれてしまうこともあります。RAGを高精度で機能させるには、データの整理や適切な運用設計など、多くの手間と工夫が必要です。 AIの汎用性を保ちながらドメイン知識を補うのは非常に難しい課題です。 3. 適用業務の選定 AI Agentをうまく活用するには、効果のある業務を選定する必要があります。ここで重要なのは、AI Agentに「何を任せるか」だけでなく、「どのように業務を再設計するか」も合わせて考える必要があるということです。 前後の処理を統合した最適化: 例えば、書類審査の業務において、すでにOCR(光学文字認識)は導入済みで、新たにAI Agentに読み取った情報を基に審査を行わせたいとします。もちろん、既存のOCRの処理は残したまま、判定だけをAI Agentにやらせることは可能です。しかし、読み取りと判断を統合して AI Agentに実行させる方が全体の精度が向上することがあります。これは、AI Agentが「判断」に必要な情報を理解して、その情報の抽出にフォーカスして「読み取り」を行うことができるためです。 逆に、部分的な最適化にとどまると、せっかくのAI Agentのポテンシャルを十分に引き出せないことになります。 4. 継続的改善のための運用設計 AI Agentを導入して終わり、というわけにはいきません。最初から高い精度が出せることはそもそも稀ですし、たとえ導入当初はうまく機能したとしても、業務のデータや前提条件は時間とともに変化するため、次第に精度が低下することは避けられません。 継続的に精度を維持・向上させるためには以下のことを考える必要があります: 「正しい」データをどのように入手するか どのようにAI Agentに教えるか いつどのようにアップデートするか さらに、これらを無理なく実施できる運用が求められます。AI Agentの導入で得られるメリットより、運用の手間・コストがかかるようでは意味がありません。したがって上記のステップは低コストで、つまり自動もしくは半自動で実行できるような仕組みを含めて運用を設計する必要があります。 5. 導入是非の判断 ここまで述べた課題があるため、AI Agentの導入が本当にROI(投資対効果)を生むのかを事前に見極めるのは簡単ではありません。 業務ごとの特性の違い: ここまで述べた問題を解決する万能なソリューションは存在しません。解決にどれほどの労力が必要かは、業務の内容や状況に依存します。そのため業務内容の詳細を検討し、実際のデータを分析して初めて判断できる部分があります。 課題の相互依存: 例えば、2で挙げたドメイン知識のインテグレーションの解決方法によっては、1の不確実性も解消する場合もあれば、そうでない場合もあります。また、3で挙げた適用業務の再設計は、4の継続的改善のための運用設計にも直接影響を及ぼします。 これらの理由から、「AI Agentを導入したらどの程度の成果が得られるのか」を事前に正確に見積もることは非常に難しく現実的ではありません。 5つの「難しさ」に対するArithmerアプローチ このようにいざ実業務にAI Agentを適用しようとすると、現時点ではまだまだ難しい課題があるということをご理解いただけたかと思います。ただこれらの課題に対する有効なアプローチも存在します。難しさを理解した上で、適切なアプローチを採って、ステップを踏んでいくことで、十分克服することが可能です。 ここでは簡単にArithmerがお客様と共にとってきたアプローチの一例をご紹介します。 不確実性への対処: 確率的(Stochastic)なモデルと決定論的(Deterministic)なモデルを組み合わせることで、一貫性と説明可能性を確保 ドメイン知識とのインテグレーション: RAGを機能させるため、過去データを数理的に分析して暗黙知を明らかにし、業務に必要なデータを整理・最適化する仕組みを構築 適用業務の選定: 業務を分解し重要性や適合性をスコアリングして、適用範囲を明確化することで最適な業務フローを構築 継続的改善のための運用設計: モデルのパラメータ調整や柔軟なカスタマイズにより、業務の変化に対応可能な仕組みを整備 導入是非の判断: 小規模かつ段階的導入により初期投資のリスクを軽減し、モデルの透明性と説明可能性を重視することで、顧客が効果判断できる環境を提供 ―――― このようにAI Agentの導入には解決すべき課題が多くありますが、それぞれ有効なアプローチもあることを簡単にご紹介しました。 次回のコラムでは、これらのアプローチを実際にどのように適用し、業務改善につなげたのか、具体的な事例を交えてご紹介します。ぜひご期待ください! 前の記事へ AIエージェントページへ 次の記事へ
- 予兆保全 | 数学とAIで社会課題を解決するArithmer
Arithmerが提供する予兆保全は画期的なシステムです。正常データのみでモデル生成が可能であり、静止画だけでなく動画にも対応。また、360度カメラなどの物体検知モデルが動作しにくい状況においても高精度に機能します。このシステムを導入する事により、本当の働き方改革がはじまります 予兆AI Prediction AI 「守り」から「攻め」のDXへ 脱・事後処理「まさか」を検知し事前に通知 予兆AIはトラブル発生前の微妙な違和感を検知し、結果的に大規模災害等を未然に防ぐ事が可能となります。正常データのみでモデルを生成するため、面倒なデータ収集やアノテーションが不要です。 お問い合わせはこちら こんなお悩みありませんか? 定期的に遠方への現地訪問を行っており、メンテナンス効率が悪く、コストがかかっている 監視カメラ画像を24時間目視チェックしているがどのような異常が発生するかわからず、自動化したくてもできない カメラ仕様や設置条件が異なる為、なかなか安定した異常検知モデルを実装できない 予兆AIはそんなあなたの 課題を解決します 予兆AIの特長 僻地でもカメラ1台を設置するだけであなたの代わりに常時監視します。 定期的な現地訪問が不要になります。現地に訪れることが難しい僻地や危険地帯などにも有効です。もちろん複数台の設置にも対応しております。 正常状態を学習するので、ありとあらゆる「異常」を検知します。 計測されたデータがあれば、あとはAI技術とシミュレーションにお任せすることで、結果の取得が可能となります。 現在の取り付け状態をベースにお客様の撮影条件に最適なモデルを提供できます。 指定されたエリアのいくつかの計測されて少ないデータを入力とすることが可能となり、データの準備の省力化に寄与できます。 【簡単モデル生成】【早期立上】【高精度検知】DX化の一歩として予兆AIを導入してみませんか? お問合せはこちら 予兆AIの活用事例 DX化への第一歩 脱:監視業務・定期巡回 事後保全から予兆保全へ ・正常データだけでモデル生成が可能な為、早期に立ち上げが可能 ・静止画だけでなく、動画にも対応。 普段と違う動きなども検知可能 ・カメラの設置条件やスペックにかかわらず実装可能。 360度カメラなどへも対応可能 ※画像はイメージです 僻地のインフラ設備の 予兆保全・異常検知 発電所などの僻地にあるインフラ設備の定期メンテナンス業務において点検コストを削減します。 INPUT ・監視カメラ画像 予兆AI ・学習モデルの作成から推論までワンストップで実行します。 ・教師なし学習 OUTPUT ・日次レポート ・異常報告レポート 生産設備の予兆保全 製造装置の通常サイクルを学習することにより、「いつもと違う」動きを察知します。これにより設備異常を早期に発見し、結果的に甚大な被害を予防します。 INPUT ・通常動作を録画した監視カメラ動画 予兆AI ・生産設備の異常検知 OUTPUT ・異常個所の通知 ※画像はイメージです ※画像はイメージです 自動運転システムにおける予兆保全・異常検知 AGVやフォークリフトなどのシステムと合わせて実装することにより、危険エリアを自動的に調整・監視。接触事故を未然に防ぎます。移動に合わせて監視エリアを自動的に調整します。 INPUT ・自動運転システム の動画像 予兆AI ・自動運転システムとの組み合わせ OUTPUT ・異常個所の通知 取組事例 トヨタ自動車株式会社 工場内運搬カートの後方安全に関する特許をトヨタ自動車と共同で出願。周辺監視システムが、接触リスクを検知した時、事前にアラートを発します。 工場内の牽引運搬車両や台車(運搬カート)に搭載された周辺監視システムが、接触リスクを検知した時、事前にアラートを発します。今回開発した技術は、定点カメラを設け、複数のカメラを用いる必要がないため、コストの増大を抑え、牽引される台車と作業者との接触リスクを低減することが可能となる牽引運搬車両の周辺監視システムです More 【簡単モデル生成】【早期立上】【高精度検知】DX化の一歩として予兆AIを導入してみませんか? お問合わせはこちら 予兆AIはさまざまな業界・業種に応用可能! スマートファクトリー・スマートメンテナンスなど、DX化のスモールスタートに最適なシステムです インフラ設備の定期メンテナンスに 生産設備の異常検知に 「移動」が多い環境に 【簡単モデル生成】【早期立上】【高精度検知】DX化の一歩として予兆AIを導入してみませんか? お問合せはこちら 導入までの流れ ヒアリング 現状についてヒアリングを行い、弊社のソリューションで課題解決できるか確認致します。 要件定義/本契約 カメラの仕様、1日あたりの撮影回数・カメラ台数など運用に必要な条件を確認。その後、見積提出・本契約になります。 システム構築 要件定義に基づきシステム構築を行います。 運用開始 構築したシステムを提供し、お客様にて運用を開始いただきます。安定稼働を目指し、弊社にてアフターサポートを行います。
- インフラAI | 数学とAIで社会課題を解決するArithmer
土木現場におけるリスクやコスト負荷などをAIを用いて解決します。生産性の向上を図り、魅力ある建設現場を目指す「i-Construction」推進に寄与します Infrastructure AI 現場におけるリスクやコストの 負荷をAIで解決 土木の現場におけるリスクやコストなどの負荷を、AIを用いて解決します。生産性の向上を図り、魅力ある建設現場を目指す「i-Construction」の推進に寄与します。 お問い合わせはこちら インフラAI こんなお悩みありませんか? 作業現場での作業事故を 無くしたい シミュレーションを扱える人が 属人化している 大量のデータ シミュレーションが必要 インフラAIはそんなあなたの課題を解決します インフラAIの特長 過去の作業事故報告から 今回の作業危険箇所を提示する さまざまな現場で発生する事故報告を集計・分析することで、現在の作業工程からAIが危険度を判定。注意点などの提示も行い作業事故0を目指します。 パラメーター推定にAIを 活用することで属人化の排除 計測された実測値を元にパラメーター推定をAIで実施するため、属人化を解消することが可能です。 少ないデータ、試行回数で 解析を実現 類似ケースをあらかじめ学習することで、指定されたエリアではデータの計測がわずかでも解析が可能となり、データ準備の省力化に寄与できます。 ※画像はイメージです 大雨による影響を事前に把握、 工期遅れを最小限に 天候に左右される建築の現場において大雨は大敵。立地条件などから降雨量に応じたシミュレーションをあらかじめ行うことで治水対策を効率化し、工期管理にお役立ていただけます。 INPUT 気象データ 観測データ 地形データ AIシステム 浸水高予測AIシステム OUTPUT 工事現場での 水たまりシミュレーション 貯水槽などの配置シュミレーション ドローンカメラで画像を収集し、点検や異常検知を効率化 ドローンカメラで撮影した画像を、AI画像解析技術を用いて異常検知を行います。高所や閉所など、人の目の行き届かない場所も平易に確認できるので、効率化が図れます。 INPUT 正常状態の画像 ドローンカメラで撮影した画像 AIシステム AI画像解析 OUTPUT 異常検知アラート ※画像はイメージです Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら
- AI Agent column6 | Arithmer
AI Agent Column 6 2025.2.28 AI Agent導入の進め方 前回のコラムでは、AI Agent導入の一つの事例を紹介しました。では、これからAI Agentを導入しようと考えたとき、どこから始めるべきでしょうか? 本稿では、AI Agent導入する際に必要となる4つのステップを紹介し、どのように進めるべきかを整理します。 ―――― AI Agent 導入前の4ステップ AI Agentは従来のAIに加えて新たな難しさがあります。そのため、まずはAI Agentを「理解」することから始めることが重要です。その上で、適用する業務を「選定」し、運用を含めた to-beを「設計」し、そのto-beに向けたステップを「計画」します。 (1) 理解 (Understand) : AI Agentの特性を知り、できること・できないことの感覚を養う (2) 選定 (Prioritize) : AI Agentの強みを活かせる業務を見極める (3) 設計 (Design) : AI Agentの業務への組み込み方のto-beを設計する (4) 計画 (Plan) : 設計で描いたto-beの実現に向けた具体的なステップを計画する (1) 理解 (Understand) これまですでに AIの導入を経験している方の中には、「AI AgentもAIの一種だ」と考える方もいらっしゃるかもしれません。しかし、AI Agentは従来のAIより格段に便利になった部分もあり、だからこそ新たな難しさも見えてきています。まずは十分な理解が必要です。 AI Agentは、技術そのものが複合的 で、従来のAIよりも構造がはるかに複雑です。 従来のAIは多くの場合、「教師あり学習」を用いた回帰や分類の問題として定式化し、データを集め、学習・評価し、適用する、という流れで進めることができました。しかし、AI Agentは 生成AI・タスク分解・自律実行・外部ツール連携 など、複数の技術が組み合わさるため、単体のモデルとして扱うことができません。 また、AI Agentのメリットの「自律性」を享受するために、多くの場合LLMの能力を活用することになります。LLMは自然言語を扱い、確率的に動作し、状況に応じて動的に判断するため、従来のシステムのように明確なルールを定めて設計することが難しくなります。事前にすべての挙動を想定できるわけではなく、「どう運用すれば意図通りに動かせるのか?」を深く理解しないまま導入を進めると、想定通りに進まず、行き詰ることになります。 このようにAI Agentを導入する際には、まず 「何ができるのか」「何ができないのか」「どう動くのか」 について感覚を養うことが重要です。 (2) 選定 (Prioritize) AI Agentは万能ではなく、得意不得意があります。適用する業務によって効果が大きく異なるため、業務との相性を見極めることが重要です。 従来のAIは、「十分なデータが揃っていて、明確な判断基準がある業務」なら適用しやすい傾向がありました。しかし、AI Agent は技術自体も複合的であり、タスク分解や実行まで担うため、ある業務に適用したときに、うまくいくかどうかを見極めるのがより難しいと言えます。 適用業務を選定する際には、次の3つの軸 で評価するのが有効です。 ビジネスインパクト : 導入による業務改善の効果が大きく、企業戦略とも合致するか 技術的な実現可能性 : 必要なデータやシステム環境が整い、実装が可能か 業務適用の実現可能性 : 法的・倫理的な問題なく、利用者・関係者にも受容されるか これらの視点を押さえ、実現可能性が高く、導入の効果が見込める業務から適用することが重要です。 (3) 設計 (Design) AI Agentは現時点ではまだ、箱から出してそのまま業務に適用できるようなパッケージ製品にはなっていません。実業務に組み込むには、次のような課題に対処する必要があります。 不確実な挙動 AIには確率的 (stochastic) な性質がつきものです。従来のAIでは、人が「判断」を担うのが定石でしたが、AI Agentの場合は「判断」も自律的に行うことが期待されています。確率的機構、決定論的 (deterministic) 機構、人の介入のバランスを設計する必要があります。 知識の不足 LLMは膨大な公開情報から学習することで、豊富な知識を獲得しました。しかし、多くの業務は現場の暗黙知に依存しており、LLMもそのままでは上手く対処することができません。これは短期的に解決できるものではなく、長期的な知識獲得の設計が不可欠です。 要件・環境の変化 業務要件やデータ、外部環境は常に変化し続けます。導入時に最適な設計をするだけでは、そのパフォーマンスを持続することはできません。業務で継続的に利用するには、変化に適応できる仕組みをあらかじめ組み込む必要があります。 これらの課題は、システム設計だけで解決できるものではありません。システムと運用の両面を統合的に設計するアプローチが求められます。 (4) 計画 (Plan) AI Agentの適用業務を決めto-beのシステム・運用の形が描けたら、そのto-beの実現に向けたステップを計画する必要があります。従来のITやAIの導入と共通の部分もありますが、AI Agentならではの注意点もあります。 不完全であることを前提に計画する AI Agentの動作には確率的な要素が含まれるため、導入前にすべてのケースを想定することは不可能です。最初から「完璧な状態」を目指すのではなく、スモールスタートし、フィードバックを活用しながら適応させていくことが重要です。 リスクの取り方を計画する 不完全なAI Agentにすべてを任せるのは難しいため、最初は範囲を限定し、段階的に広げるのが現実的です。 ただし、一度「人が判断」する仮運用を始めると、後から変えにくくなります。リスクとリターンを総合的に評価し、本運用への移行基準を事前に定めることが重要です。 問題発生時の対応を計画する AI Agentは確率的で複合的な技術のため、問題発生時の原因特定や対処が非常に困難です。未知の問題が起こる前提で、柔軟に対応できる環境を整える必要があります。また、問題発生はAI Agentにとって貴重な学習の機会でもあります。問題の解決だけでなく、継続的改善につなげられることが重要です。 ―――― まずは全体を4ステップに整理してみました。次回は、(1) の「理解」についてもう少し詳しく見ていきたいと思います。 お楽しみに! 前の記事へ AIエージェントページへ 次の記事へ
- 製造AI | 数学とAIで社会課題を解決するArithmer
製造や加工の工程で発生する部品のばらつき判定や、自動運転のサポートなど、現場の暗黙知を組織知に変えるAIを開発・提供します。 製造AI Manufacturing AI 製造や加工の現場で起きるさまざまな困りごとをAIを用いて最適化する 製造や加工の工程で発生する部品の不良品判定や、自動運転のサポートなど、現場の暗黙知を組織知に変えるAIを開発・提供しています。 お問い合わせはこちら こんなお悩みありませんか? 工場内カートや大型トラックの 巻き込みによる接触事故 機械のトラブルによる 作業の停止時間をを短縮したい 加工後の検査精度を高め不良品出荷リスクを抑制したい 製造AIはそんなあなたの課題を解決 します 製造AIの特長 動画解析技術を用いて 危険状態を検知 車体に取り付けたカメラで車両周辺や監視車両側面、後方を監視し、障害物を検知すると注意を喚起します。 画像検査のAIを活用し 機器異常の予兆を検知 機器の動きを動画像データで取得することで、異常(故障に至る前の予兆)を発見します。大きなトラブルを未然に防ぎ、作業ロスを低減します。 画像解析エンジンを活用し不良品の見逃しリスクを改善 既存の検査装置とAI画像解析エンジンを組み合わせることで、不良品の見逃しを削減。不良品出荷リスクと再検査工数の削減に貢献します。 ※画像はイメージです 生産設備の予兆保全 製造装置の通常サイクルを学習し、人の目では気付きにくい「いつもと違う変化」を察知します。これにより設備異常を早期に発見し、結果的に甚大な被害を予防します。 INPUT 通常動作の 動画 AIシステム 生産設備の 異常検知 OUTPUT 異常箇所の通知 自動運転システムにおける 予兆保全・異常検知 AGVやフォークリフトなどのシステムと実装することで、危険エリアを自動的に調整・監視。接触事故を未然に防ぎます。 エッジコンピュータを活用し、移動に合わせて監視エリアを自動的に調整することができ、リアルタイム検知が可能となります。 INPUT 動画像 OUTPUT 異常箇所の通知 AIシステム 自動運転システムとの組み合わせ ※画像はイメージです 導入事例 トヨタ自動車株式会社様 工場内運搬カートの後方安全に関する特許 を共同で出願 より詳しく Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら
- AI Agent column3 | Arithmer
AI Agent Column 3 2025.1.14 AI Agentで何ができるのか? 明けましておめでとうございます。今年も昨年に続いてAI Agentの年になりそうですね! 昨年末のAI Agentコラムの第1回ではAI Agentとは何か、第2回ではなぜいま注目されるのかを紹介しました。そしてこの第3回では、AI Agentに実際に何ができるのか具体的に見ていきたいと思います。 ―――― 代表的な用途 前回のコラムで触れたように、AI Agentは技術の進化や環境の整備、ビジネスの期待のが高まりなどを背景に、様々な領域で活用が進められています。以下に、代表的な用途をいくつかご紹介します。 カスタマーサポート: AI Agentは、カスタマーサポート業務の自動化で顕著な成果を上げています。具体的には、顧客からの技術的な問題や製品の不具合に関する問い合わせに対し、AI Agentが自律的に対応し、問題の特定、解決策の提示、さらには必要に応じて専門スタッフへの切り分け、引継ぎなども行います。 事務作業: 定型的な事務作業を自動化し、業務効率を高めます。例えば、会議の日程調整や終了後の議事録作成を自動で行います。またメール対応も、これまでのやり取りの経緯や、先方の送付資料を要約し、回答案を生成することができます。日常的なタスクをAI Agentが代行することで、従業員がよりクリエイティブな仕事に集中することができます。 データ分析: AI Agentはデータ分析でも利用されています。例えば、マーケティング担当者が『今期売上が最も伸びた商品は何か?』と尋ねると、売上データを解析し商品別成長率を示します。続けて『その商品の売上が伸びた地域は?』と尋ねると、その商品の地域別成長率を示します。こうした対話的なプロセスで、ユーザーの意思決定を支援します。 ソフトウェア開発: AI Agentは、ソフトウェア開発においてコード生成やデバッグ支援、タスクの自動化などに利用されています。例えば、開発者が必要な機能を説明すると、それを基にサンプルコードを生成し、エラーが発生した場合にはエラーメッセージから修正案を提示することができます。また、テストケースの生成や実行の自動化を通じて、品質向上にも貢献しています。 マーケティングコンテンツ作成: SNS投稿やキャンペーン資料の作成を支援します。例えば、新商品の特長を入力すると、それを基にキャッチコピーや投稿文を生成します。また、ターゲット層の説明をもとにその層に訴求するデザイン案や画像の生成も可能です。これにより、マーケティング業務の負担を軽減し、かつ、迅速かつ効果的な施策を実行することができます。 教育: AI Agentはまた、教育分野における個別最適化学習にも使われています。例えば、学習者の進捗を分析し、苦手分野を特定して適切な練習問題を提案します。また、教員向けにはテスト採点や出席管理といった事務作業を自動化し、教育活動に集中できる環境を提供します。 バリエーション豊かなAI Agent このように、AI Agentとひとことで言っても、その役割や適用範囲は非常に幅広いものです。人間の意思決定や創造性を支援することに重きを置くものもあれば、人間の負担を減らすために自動実行に重きを置くものもあります。また、特定の業務に特化したAgentもあれば、幅広い分野で活用できる汎用型のAgentも存在します。 先に挙げた用途の例は、以下のように整理するとわかりやすいでしょう。 このように、AI Agentはさまざまな用途で活用が進んでいます。さらに、AI Agent自身の柔軟性の高さや、多様な試みが世界中で行われていることから、今後ますます広い領域に適用されていくことでしょう。 ―――― 今回はAI Agentの代表的な用途と、その幅広さについてご紹介しました。一方で、AI Agentはまだ万能ではありません。次回の第4回では、AI Agentを実際の業務に適用する際の難しさについてお話ししたいと思います。 ぜひご期待ください。 前の記事へ AIエージェントページへ 次の記事へ
- 代表挨拶 | 数学とAIで社会課題を解決するArithmer
数学、科学をいかに応用して、社会課題を解決するのか、そしてHope(希望)へとつなげるのか、それを考えるのが私たちの仕事です。 Message 代表挨拶 現代数学を応用し まだない新しい技術を創造してゆきます 代表取締役社長 兼 CEO 大田佳宏 Arithmer株式会社 代表取締役社長兼CEO 総務省 AIネットワーク社会推進会議 構成員 東京大学大学院数理科学研究科 客員教授 東京大学アイソトープ総合センター 客員教授 一般社団法人日本応用数理学会 代表会員 博士(数理科学)(東京大学) Arithmetic × AI Arithmerは、数学で社会課題を解決する会社です。 算術、数学という意味の“Arithmetic”から名付けました。 数学は簡潔にして美しく、世界を変える力を持っています。 これまでの数学者、科学者、技術者達も、それを証明してきました。 そして現在、私達は現代数学を応用して、さまざまな社会課題を解決するため、新しい高度AIシステムを導入しています。 私達は業界を代表する多くの企業様にArithmerのAIソリューションをお使いいただいている事に感謝をするとともに、その大きな社会的責任もしっかり認識して、よりよい未来のための新しい技術を創造していきたいと思います。 代表取締役社長 兼 CEO 大田佳宏 メディア掲載 熊本日日新聞に当社の浸水AIの記事が掲載されました 金沢シーサイドFMのラジオ番組に当社代表が出演、YouTubeでアーカイブを公開 モノ・マガジン9.16号に当社の浸水AIが紹介されました メディア掲載一覧へ
- スタッフ紹介 | 数学とAIで社会課題を解決するArithmer
Arithmerは東京大学数理初となる企業として設立されました。様々な専門分野をバックグラウンドに持つスタッフが活躍しています。 Our Team スタッフ紹介 Arithmerは東京大学数理科学研究科初となる企業として設立されました。 様々な専門分野をバックグラウンドに持つスタッフが活躍しています。 フェロー 兼 CTO C.A. 東京大学理学系研究科物理学専攻修了(理学博士)。フランス・サクレー研究所、ドイツ・ザールラント大学にて研究と教育に従事。日本物理学会若手奨励賞受賞。 ボタン エンジニア M.T. 東京工業大学 大学院情報理工学研究科 数理・計算科学専攻 博士後期課程修了(博士(理学))。同専攻助教としてトポロジーの研究と教育に従事。 ボタン エンジニア Y.N. 2010年 東京大学大学院数理科学研究科数理科学専攻博士課程修了(博士/数理科学)。流体予測AIなど、数理モデルを取り込んだAIソリューションの開発に従事。 ボタン エンジニア R.B. Johns Hopkins大学環境工学修士課程修了。2018年来日。金融予測やモデリングに幅広く携わる。企業が直面する業務上の課題解決のため、機械学習と深層学習を学ぶ。 ボタン エンジニア K.T. 東京大学大学院修了後、外資系証券会社や日系証券会社にてデリバティブ評価のアルゴリズム開発に従事。現在は研究開発本部に所属し、数理的なプログラムの開発に従事。 ボタン エンジニア M.H. 九州大学大学院 数理学研究科にて修士号を取得。24年間ソフトウェア開発会社にてプログラマーやプロジェクトリーダーとして開発に携わる。 ボタン エンジニア H.K. 早稲田大学大学院基幹理工学研究 科数学応用数理専攻修士課程修 了。在学中よりArithmerにて勤務、2024年4月に入社。物流ロボットAIプロジェクトに従事。 ボタン ボタン 通信機器・システム販売会社で提案営業や新規顧客開拓を担当し、売上・利益を拡大。事業副本部長として、大手企業の工場や施設、物流システムへのAI導入を推進し、事業拡大に貢献。 営業 Y.I. 営業 S.H. 大学卒業後、金融機関・Sler企業等に営業として勤務。名古屋にて画像・動画AIシステムやビッグデータ解析案件を中心に、商社・製造業等のプロジェクトを推進。 ボタン 営業 K.S. 大学卒業後、ソーシャルエンターテイメントサービス企業で事業戦略の立案、実行を担当。2024年6月Arithmerに入社。企業厚生施設や製造設備向け画像・動画AIプロジェクトに従事。 ボタン コーポレート N.M. 前職でユーザーサポート・ヘルプデスクを経験したのち、2020年9月Arithmerに入社。情報システム分野はもとより、システム関連コストの削減検討などでも活躍中。 ボタン ENTRY Mathematics is the key and door to the sciences. Why don't you challenge social issues with mathematics and AI/IT 数学をベースにした高い技術力で 人間の直感を超えたソリューションをともに創造し 今までにないアプローチで社会課題に挑戦しませんか。 エントリー
- 資料請求 | 数学とAIで社会課題を解決するArithmer
Arithmerでは7領域においてAIシステムを導入しています。一気通貫の対応力でお客様の課題解決に貢献いたします。 Document request 資料請求 当サイトでは実在性の証明とプライバシー保護のため、SSLサーバ証明書を使用し、SSL暗号化通信を実現しています。 ダウンロードしたい資料を選んでください * 必須項目 00. Consulting 01.OCR×LLM 02.浸水AI 03.風力AI 04.Realtime VR 05.Recommend×LLM 06.AMR(⾃律⾛⾏) 07.Vision AI 08.O&M(⼈/設備保全) 09.Robotics 10.Safety AI 会社名 メールアドレス 名前 電話番号 ご質問・ご不明点 メルマガ配信に登録する 個人情報の取り扱いについて同意する 詳細はこちら 送信
- 実績一覧 | 数学とAIで社会課題を解決するArithmer
高度数学のビジネス活用を目指し、様々な分野でイノベーションの実現を推進しています。 形式科学である数学、自然科学である物理学など、様々な分野の研究者がシナジーを生み出し、 それらを活用したプロジェクトが同時進行しており、その適応領域は拡大しています。 Solutiuons 事業内容 AIエージェ ン ト ボタン 製造AI ボタン インフラAI ボタン リテールAI ボタン 風力AI ボタン 物流AI ボタン ボタン バイオAI ボタン 浸水AI ボタン





