Search
検索
55件の検索結果が見つかりました
- 役員紹介 | 数学とAIで社会課題を解決するArithmer
Arithmer株式会社の役員のご紹介 Leadership 役員紹介 数学で社会課題を解決する 代表取締役社長 兼 CEO 大田 佳 宏 ≫代表挨拶はこ ちら Arithmer株式会社 代表取 締役社長 兼 CEO 総務省 AIネットワーク社会推進会議 構成員 東京大学大学院数理科学研究科 客員教授 東京大学アイソトープ総合センター 客員教授 一般社団法人日本応用数理学会 代表会員 博士(数理科学)(東京大学) 取締役 常務執行役員 兼 CFO 経営管理本部長 乾 隆一 Arithmer株式会社 取締役 常務執行役員 兼 CFO 経営管理本部長 取締役 執行役員 研究開発本部長 森 雅巳 Arithmer株式会社 取締役 執行役員 研究開発本部長 社外取締役 取締役(社外) アライドアーキテクツ㈱取締役ファウンダー 中村 壮秀 取締役(社外) ㈱フォース・マーケティングアンドマネージメント 代表取締役社長(アスクル㈱創業者) 岩田 彰一郎 監査役 常勤監査役 星野 義雄 社外監査役 高岡 彰治 監査役 落合 孝文 アドバイザー 坪井 俊 東京大学大学院 数理科学研究科 名誉教授 武蔵野大学 工学部数理工学科 特任教授 元・社団法人日本数学会 理事長 米村 敏朗 第87代警視総監 第17・18代内閣危機管理監 東京オリンピック・パラリンピック競技大会組織委員会CSO 丸尾 浩一 株式会社Major7th 代表取締役社長 元・大和証券株式会社 専務取締役 下別府 俊也 三井住友信託銀行株式会社 元専務執行役員 執行役員・フェロー 常務執行役員 乾 隆一 執行役員 森 雅巳 フェロー 有田 親史
- インフラAI | 数学とAIで社会課題を解決するArithmer
土木現場におけるリスクやコスト負荷などをAIを用いて解決します。生産性の向上を図り、魅力ある建設現場を目指す「i-Construction」推進に寄与します Infrastructure AI 現場におけるリスクやコストの 負荷をAIで解決 土木の現場におけるリスクやコストなどの負荷を、AIを用いて解決します。生産性の向上を図り、魅力ある建設現場を目指す「i-Construction」の推進に寄与します。 お問い合わせはこちら インフラAI こんなお悩みありませんか? 作業現場での作業事故を 無くしたい シミュレーションを扱える人が 属人化している 大量の データ シミュレーションが必要 インフラAIはそんなあなたの課題を解決します インフラAIの特長 過去の作業事故報告から 今回の作業危険箇所を提示する さまざまな現場で発生する事故報告を集計・分析することで、現在の作業工程からAIが危険度を判定。注意点などの提示も行い作業事故0を目指します。 パラメーター推定にAIを 活用することで属人化の排除 計測された実測値を元にパラメーター推定をAIで実施するため、属人化を解消することが可能です。 少ないデータ、試行回数で 解析を実現 類似ケースをあらかじめ学習することで、指定されたエリアではデータの計測がわずかでも解析が可能となり、データ準備の省力化に寄与できます。 ※画像はイメージです 大雨による影響を事前に把握、 工期遅れを最小限に 天候に左右される建築の現場において大雨は大敵。立地条件などから降雨量に応じたシミュレーションをあらかじめ行うことで治水対策を効率化し、工期管理にお役立ていただけます。 INPUT 気象データ 観測データ 地形データ AIシステム 浸水高予測AIシステム OUTPUT 工事現場での 水たまりシミュレーション 貯水槽などの配置シュミレーション ドローンカメラで画像を収集し、点検や異常検知を効率化 ドローンカメラで撮影した画像を、AI画像解析技術を用いて異常検知を行います。高所や閉所など、人の目の行き届かない場所も平易に確認できるので、効率化が図れます。 INPUT 正常状態の画像 ドローンカメラで撮影した画像 AIシステム AI画像解析 OUTPUT 異常検知アラート ※画像はイメージです Arithmerではさまざまな業種の課題を解決できるソリューションがあります。 紹介事例以外でも、お気軽にお問い合わせください。 お問い合わせはこちら
- 資料請求 | 数学とAIで社会課題を解決するArithmer
Arithmerでは7領域においてAIシステムを導入しています。一気通貫の対応力でお客様の課題解決に貢献いたします。 Document request 資料請求 当サイトでは実在性の証明とプライバシー保護のため、SSLサーバ証明書を使用し、SSL暗号化通信を実現しています。 ダウンロードしたい資料を選んでください * 必須項目 00. Consulting 01.OCR×LLM 02.浸水AI 03.風力AI 04.Realtime VR 05.Recommend×LLM 06.AMR(⾃律⾛⾏) 07.Vision AI 08.O&M(⼈/設備保全) 09.Robotics 10.Safety AI 会社名 メールアドレス 名前 電話番号 ご質問・ご不明点 メルマガ配信に登録する 個人情報の取り扱いについて同意する 詳細はこちら 送信
- AI Agent column3 | Arithmer
AI Agent Column 3 2025.1.14 AI Agentで何ができるのか? 明けましておめでとうございます。今年も昨年に続いてAI Agentの年になりそうですね! 昨年末のAI Agentコラムの第1回ではAI Agentとは何か、第2回ではなぜいま注目されるのかを紹介しました。そしてこの第3回では、AI Agentに実際に何ができるのか具体的に見ていきたいと思います。 ―――― 代表的な用途 前回のコラムで触れたように、AI Agentは技術の進化や環境の整備、ビジネスの期待のが高まりなどを背景に、様々な領域で活用が進められています。以下に、代表的な用途をいくつかご紹介します。 カスタマーサポート: AI Agentは、カスタマーサポート業務の自動化で顕著な成果を上げています。具体的には、顧客からの技術的な問題や製品の不具合に関する問い合わせに対し、AI Agentが自律的に対応し、問題の特定、解決策の提示、さらには必要に応じて専門スタッフへの切り分け、引継ぎなども行います。 事務作業: 定型的な事務作業を自動化し、業務効率を高めます。例えば、会議の日程調整や終了後の議事録作成を自動で行います。またメール対応も、これまでのやり取りの経緯や、先方の送付資料を要約し、回答案を生成することができます。日常的なタスクをAI Agentが代行することで、従業員がよりクリエイティブな仕事に集中することができます。 データ分析: AI Agentはデータ分析でも利用されています。例えば、マーケティング担当者が『今期売上が最も伸びた商品は何か?』と尋ねると、売上データを解析し商品別成長率を示します。続けて『その商品の売上が伸びた地域は?』と尋ねると、その商品の地域別成長率を示します。こうした対話的なプロセスで、ユーザーの意思決定を支援します。 ソフトウェア開発: AI Agentは、ソフトウェア開発においてコード生成やデバッグ支援、タスクの自動化などに利用されています。例えば、開発者が必要な機能を説明すると、それを基にサンプルコードを生成し、エラーが発生した場合にはエラーメッセージから修正案を提示することができます。また、テストケースの生成や実行の自動化を通じて、品質向上にも貢献しています。 マーケティングコンテンツ作成: SNS投稿やキャンペーン資料の作成を支援します。例えば、新商品の特長を入力すると、それを基にキャッチコピーや投稿文を生成します。また、ターゲット層の説明をもとにその層に訴求するデザイン案や画像の生成も可能です。これにより、マーケティング業務の負担を軽減し、かつ、迅速かつ効果的な施策を実行することができます。 教育: AI Agentはまた、教育分野における個別最適化学習にも使われています。例えば、学習者の進捗を分析し、苦手分野を特定して適切な練習問題を提案します。また、教員向けにはテスト採点や出席管理といった事務作業を自動化し、教育活動に集中できる環境を提供します。 バリエーション豊かなAI Agent このように、AI Agentとひとことで言っても、その役割や適用範囲は非常に幅広いものです。人間の意思決定や創造性を支援することに重きを置くものもあれば、人間の負担を減らすために自動実行に重きを置くものもあります。また、特定の業務に特化したAgentもあれば、幅広い分野で活用できる汎用型のAgentも存在します。 先に挙げた用途の例は、以下のように整理するとわかりやすいでしょう。 このように、AI Agentはさまざまな用途で活用が進んでいます。さらに、AI Agent自身の柔軟性の高さや、多様な試みが世界中で行われていることから、今後ますます広い領域に適用されていくことでしょう。 ―――― 今回はAI Agentの代表的な用途と、その幅広さについてご紹介しました。一方で、AI Agentはまだ万能ではありません。次回の第4回では、AI Agentを実際の業務に適用する際の難しさについてお話ししたいと思います。 ぜひご期待ください。 前の記事へ AIエージェントページへ 次の記事へ
- 会社概要 | 数学とAIで社会課題を解決するArithmer
Arithmerは、数学で社会課題を解決する会社です。Arithmerという社名は、算術、数学という意味の “Arithmetic” から名付けました。 Company 会社概要 Arithmetics focus on Social Challenges 数学で社会課題を解決する Arithmerは顧客やパートナーのデジタルトランスフォーメーション(DX)に寄り添うAI開発会社です。数学のコア要素技術をベースに、製造AI、風力AI、インフラAI、物流AI、リテールAI、バイオAIなど、さまざまな最先端のAIエンジンを駆使したソリューションのほかに、これらに生成AIを組み込んだソリューションなどを開発しています。これらの高度技術を自在に組み合わせることで、顧客の課題解決に貢献してまいります。 会社概要 会社名 Arithmer 株式会社 創業 2016年9月1日 資本金 1億円(2025年3月31日現在) 代表者 大田佳宏 代表取締役社長 兼 CEO (博士(数理科学)(東京大学)) 代表挨拶> 取締役 乾 隆一 取締役 常務執行役員 兼 CFO 経営管理本部長 森 雅巳 取締役 執行役員 研究開発本部長 中村壮秀 取締役(社外)アライドアーキテクツ㈱取締役ファウンダー 岩田彰一郎 取締役(社外)㈱フォース・マーケティングアンドマネージメント 代表取締役社長(アスクル㈱創業者) 監査役 星野義雄 常勤監査役 高岡彰治 監査役(社外) 落合孝文 監査役 執行役員 乾 隆一 取締役 常務執行役員 兼 CFO 経営管理本部長 森 雅巳 取締役 執行役員 研究開発本部長 アクセス 本社 〒113-0033 東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 TEL:03-5579-6683 アクセスマップ> 名古屋オフィス 〒451-0042 愛知県名古屋市西区那古野二丁目14番1号 なごのキャンパス 2-1号室 大阪オフィス 〒542-0081 大阪府大阪市中央区南船場3丁目9-10 徳島ビル11階 徳島オフィス 〒770-0831 徳島県徳島市寺島本町西1-61 徳島駅クレメントプラザ5階 東京大学サテライトオフィス 〒113-0032 東京都文京区弥生2丁目11-16 東京大学浅野キャンパス アイソトープ総合センター1F Arithmer本社 〒113-0033 東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 名古屋 オフィス 〒451-0042 愛知県名古屋市西区那古野二丁目14番1号 なごのキャンパス2-1号 東京大学サテライトオフィス 〒113-0032 東京都文京区弥生二丁目11番16号 東京大学浅野キャンパス アイソトープ総合センター1階 徳島オフィス 〒770-0831 徳島県徳島市寺島本町西一丁目61 徳島駅クレメントプラザ5階 大阪オフィス 〒542-0081 大阪府大阪市中央区南船場 三丁目9番10号 徳島ビル11階
- お問い合わせ | 数学とAIで社会課題を解決するArithmer
Arithmerでは7領域においてAIシステムを導入しています。一気通貫の対応力でお客様の課題解決に貢献いたします。 Contact お問い合わせ 当サイトでは実在性の証明とプライバシー保護のため、SSLサーバ証明書を使用し、SSL暗号化通信を実現しています。 お気軽にお問い合わせください。 1営業日以内にご連絡いたします。 オプションを選択 * サービス詳細のお問い合わせ その他(詳細は下記にお願いします) 広報について 採用について 採用ページはこちら 会社名 メールアドレス 名前 電話番号 お問い合わせ内容詳細 メルマガ配信に登録する 個人情報の取り扱いについて同意する 詳細はこちら 送信
- Arithmer | Privacy
Arithmer株式会社はプライバシーマークを取得しております。 Privacy プライバシーマーク Arithmer株式会社はプライバシーマークを取得しております。 証明書はこちら 事務所 Arithmer 株式会社 事業所 東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 認証機関名 一般財団法人日本データ通信協会 認証登録番号 第21004668(03)号 有効期限日 2024年8月17日~2026年8月16日
- アクセス | 数学とAIで社会課題を解決するArithmer
Arithmerのアクセス紹介 Access アクセス アリスマー本社 名古屋オフィス Arithmer本社 〒113-0033東京都文京区本郷一丁目24番1号 ONEST本郷スクエア3階 TEL : 03-5579-6683 名古屋オフィス 〒451-0042 愛知県 名古屋市西区那古野二丁目14番1号 なごのキャンパス 2-1号室 大阪オフィス 〒542-0081大阪府大阪市中央区南船場3丁目9-10 徳島ビル11階 大阪オフィス 徳島オフィス 徳島オフィス 〒770-0831徳島県徳島市寺島本町西1-61 徳島駅クレメントプラザ5階 東大サテライトオフィス 東京大学サテライトオフィス 〒113-0032 東京都文京区弥生2丁目11-16 東京大学浅野キャンパス アイソトープ総合センター1F
- AI Agent column1 | Arithmer
AI Agent Column 1 2024.12.26 AI Agentとは? 近年のAIの進化は目覚ましく、私たちは既に対話型AIや生成AIを日常的に活用しています。その中でもここ1・2年、特に注目されているのが "AI Agent" という概念です。AI Agentとは一体何でしょうか? これまでのAIと何が違うのでしょうか? AI Agentコラム第1回の本稿では、まずAI Agentとは何を指すのかを整理したいと思います。 ―――― AI Agent とは? 例えば、あなたが旅行の計画をしているとします。目的地や日程だけをAIに伝えると、最適なフライトを検索し、予約を完了してくれる。さらには、ホテルの予約やレストランの手配まで自律的に進めてくれる― ―これが、今注目されているAI Agentの一例です。 "AI Agent" という言葉自体は以前からありましたが、現在のような「大規模言語モデル(LLM)を活用し、自律的にタスクを遂行するシステム」の意味で使われ始めたのは、2023年4月ごろからです。具体的には、LangChain, Auto-GPT, BabyAGIなどのシステムが次々と登場し、それぞれがツール連携やタスク処理の新しい可能性を示しました。従来の対話型AIとは異なり、目標達成のために自ら情報を集めタスクを分解し実行する『行動するAI』という新しい方向性を打ち出したと言えます。これ以後このコンセプトが "AI Agent" として広まり、ビジネスや研究の分野で大きな注目を集めています。 このように "AI Agent" は幅のある概念ですが、このコラムでは次のように定義します。 「自律性、反応性、積極性、社会的能力を持ち、環境と相互作用して目標を達成するシステム」 これを図にすると以下のようになります。自律性、反応性、積極性、社会的能力という4つの特性が連携して、AI Agentが目標達成する仕組みを表しています。 ここで特に注目すべきは、「環境に作用して目標を達成する」という点です。従来の対話型AI(ChatGPTなど)は、ユーザーの問いに答える「受動的」な存在でした。しかし、AI Agentは目標に向けて自ら情報を探し、計画を立て、ツールや他者との連携を通じてタスクを遂行する「能動的」な存在へと発展しています。 従来の自動化との違いは? 「行動する」システム自体は以前からありました。 例えば、RPA(Robotic Process Automation )は2010年代前半ごろから広く認識され実用化している技術です。RPAも環境を観測し、自律的に環境に対して行動を起こすことができます。ただし、その判断はルールに従って行われ、そのルールは事前にプログラムやフロー図など形式的な手法で記述しなければなりません。 これに対して “AI Agent” は、ユーザーが自然言語で目的を指示するだけで、あとは判断することができます。この差は非常に大きいものです。 冒頭に挙げた旅行の手配の例で考えてみましょう。 RPAを使った場合、フライト予約はあらかじめ設定された手順に従って行われます。航空会社のウェブサイトにアクセスし、日付や目的地を入力して検索、条件に合うフライトを選んで予約する、といったプロセスです。しかし、この手順は固定的で、予期せぬ事態には対応できません。例えば、フライトが満席の場合、RPAは次の手順に進めず、人間が条件を再設定する必要があります。 一方、AI Agentは異なります。フライトが満席の場合、自ら次の選択肢を探し、条件に合う別のフライトを提案します。それだけでなく、フライト変更が宿泊やレンタカー手配に影響する場合でも、関連タスクを再調整し、計画全体を柔軟に再構築できます。固定的な手順に縛られず、目標達成に向けて動けるのがAI Agentの特長です。 AI Agentの位置づけ このように、AI AgentはChatGPTの自然言語能力とRPAの自動実行の技術が融合したものと捉えることができます。対話型と自動実行型、自然言語とルールベースという2軸で整理すると以下のようになります。 このように、AI Agentは「自然言語で指示し、タスクを自動実行する」という点で、他の技術とは一線を画しています。 ―――― 今回は、本AI Agentコラムの第1回として「AI Agentとは?」を整理してみました。次回の第2回では、AI Agentがなぜいま、企業や研究者たちの注目を集めているのか、その背景を掘り下げていきます。ぜひご期待ください。 AIエージェントページへ 次の記事へ
- AI Agent column5 | Arithmer
AI Agent Column 5 2025.1.30 AI Agent導入の一例 これまでAI Agentの特徴やできることについて解説してきましたが、実際にそれを活用できるようになるまでのイメージがまだ付いていないという方もいらっしゃるかもしれません。そこで今回は、ある会社様に物品輸送を最適化するシステムを導入した時の経験談を書きたいと思います。 その会社様は当時、ある部門が抱える大きな業務において属人的な作業が多く、効率化が求められていました。 その効率化が求められていた業務を簡単に説明すると以下のような流れです: ①集められた情報の精査(不備の確認など) ②条件に基づく交渉 ③複数の選択肢から 「最適な」サービスを選定 最初にこの課題について相談を受けた時点では、その会社様もArithmerも具体的にどのようなデータを入力し、どのような結果を出力するシステムが必要なのか、あるべき姿をまだ掴めていない状況でした。 そこで、まずはコンサルティング的なアプローチで、データの活用方法について先方と議論することからプロジェクトをスタートしました。過去のデータをお借りし、数理的な分析を行うことで、業務の中で暗黙知となっていた重要なポイントを明確化しました。このプロセスは、AIエージェントの文脈で言うと、RAGに必要なデータを選別し、効果的に活用するための基盤を整備する作業です。 次にシステム開発を進めるにあたり、対象とする機能の範囲を絞ることが重要となります。今回のケースでは、上記①〜③に対応する機能のスコープを次のように設定しました。 ①初期段階のデータ精査をシステムで自動化 ②交渉については自動化はせず、交渉のための材料を提供する機能を設ける ③最終的な意思決定は人が行うが、その支援のためにシステムが「レコメンド」をする ここで「レコメンド」とは、入力されたデータを総合的に分析し、その結果をもとに選択肢を比較することを指します。条件が理想的に揃っている場合(例えば、コストが低く、スピードが早く、安全性が高いなど)を最適な選択肢とし、それとは対極の条件を低評価とします。各選択肢には多くの数値データやテキストデータが含まれています。このため、複数の選択肢を分析・比較する際の情報量は非常に膨大になります。従ってこのプロジェクトの中核は、この膨大な情報をいかに効率的に処理し、適切な評価を行う仕組みを実現するかという点でした。 案件ごとにモデルを柔軟に構築・調整できることは、Arithmerの大きな強みです。今回のケースでは、出力されるレコメンドに説明可能性が求められたため、確率論的(Stochastic)なアプローチではなく、決定論的(Deterministic)なモデルを採用しました。これにより、各条件がバランスよく反映されるパラメータ設定を行い、実用性の高いシステムを提供することができました(もちろん、他の案件では確率論的手法や両者を組み合わせたハイブリッドアルゴリズムが有効となる場合もあります)。 現在、このシステムは会社様に継続的にご利用いただいており、大変嬉しい限りです。また、近年のAI技術の進歩により、当初は人が担っていた交渉業務の自動化も実現可能な段階に近づいています。私たちとしても、このシステムのさらなる発展が非常に楽しみであり、引き続き改良を重ねていきたいと考えています。 ―――― 次回は、これから AI Agent の導入を検討しようという方々に向けて、検討すべきことやそのステップについて整理していきたいと思います。お楽しみに! 前の記事へ AIエージェントページへ 次の記事へ
- 代表挨拶 | 数学とAIで社会課題を解決するArithmer
数学、科学をいかに応用して、社会課題を解決するのか、そしてHope(希望)へとつなげるのか、それを考えるのが私たちの仕事です。 Message 代表挨拶 現代数学を応用し まだない新しい技術を創造してゆきます 代表取締役社長 兼 CEO 大田佳宏 Arithmer株式会社 代表取締役社長兼CEO 第64回国際数学オリンピック 組織委員会 副委員長 総務省 AIネットワーク社会推進会議 構成員 東京大学大学院数理科学研究科 客員教授 東京大学アイソトープ総合センター 客員教授 一般社団法人日本応用数理学会 代表会員 博士(数理科学)(東京大学) Arithmetic × AI Arithmerは、数学で社会課題を解決する会社です。 算術、数学という意味の“Arithmetic”から名付けました。 数学は簡潔にして美しく、世界を変える力を持っています。 これまでの数学者、科学者、技術者達も、それを証明してきました。 そして現在、私達は現代数学を応用して、さまざまな社会課題を解決するため、新しい高度AIシステムを導入しています。 私達は業界を代表する多くの企業様にArithmerのAIソリューションをお使いいただいている事に感謝をするとともに、その大きな社会的責任もしっかり認識して、よりよい未来のための新しい技術を創造していきたいと思います。 代表取締役社長 兼 CEO 大田佳宏
- ファッションレコメンド・バーチャルフィッティング | 数学とAIで社会課題を解決するArithmer
Arihtmer独自の技術の最適化レコメンドで顧客属性データ・購買データなど数万のデータから完全パーソナライズされたファッションを提案。バーチャルフィッティング機能でサイズ感や着用イメージをビジュアル化し顧客満足向上へ。 ファッションレコメンド / バーチャルフィッティング 最適化レコメンドとバーチャルフィッティングで、 最適化レコメンドで顧客属性データ・購買データなど数万のデータから完全パーソナライズされたファッションを提案。バーチャルフィッ ティング機能でサイズ感や着用イメージをビジュアル化し顧客満足向上、競合との差別化へ。 ユーザー1人ひとりに寄り添ったコンシェルジュ型ECサイトを お問い合わせはこちら こんなお悩みありませんか? 実店舗に来店した時のように、 ショッピングの楽しさや体験を ECサイトで提供することが難しい… ECサイトではユーザーの ニーズを組み取ったコーディネイトのアドバイス、接客がおこなえない… ECサイトの課題であるサイズ感や試着感、生地感を提供することは 困難で、返品が多い… ファッションレコメンド・バーチャルフィッティングで 課題を解決できます ユーザーに新しいショッピング体験・楽しさを提供可能 実店舗ではある「お買い物の楽しさ」をファッションレコメンドでECサイトで提供できます。新感覚のユーザー体験として他社とのECサイトとの差別化が可能です。 数万のデータからユーザーの ニーズ合った商品をレコメンド 購買/来店履歴などを元にユーザーの趣味趣向をAIが学習し、店頭の販売員しかできなかったコーディネイトを、アプリ上で実現。パーソナライズされたファッションを提供する事で購買点数、購買単価アップが可能です。 着せ替えでサイズ感や試着 イメージ、生地感を提供可能 バーチャルフィティングによりユーザー自身が着用しているイメージを提供。また、数多くの試着パターンを提示することが可能となり、サイズ不一致や着用時の違和感による返品の減少が期待できます。 Fashion recommend 4 Big data x 3 AI algorithmによって実現する、個人の嗜好に合わせたレコメンド ファッションレコメンドシステムの特長 3つのAIエンジン 「AIデリバリー」「AIコーディネイト」「セレクトレンズ」 が店頭の気の利いた接客と 同じように、ユーザー1人ひとりに寄り添ったベストなレコメンデーション 体験を提供します。 ・リアルタイムトレンドデータ ・顧客属性データ ・アプリ上のデモグラフィックデータ ・2.4億以上のコーディネイトデータ × ・AIエージェントエンジン ・AIプロファイリングエンジン ・AIレコメンドコアエンジン 1. 一人ひとりの個性に合わせた商品レコメンデ―ション「AIデリバリー」 2. 一人ひとりの個性に合わせた自分専用のコーディネイトレコメンデ―ション「AIコーディネイト」 3. AIがユーザーの探し物を一緒に見つけてくれる「セレクトレンズ」 Output Input 1:社内情報 顧客データ、 採寸データ 自動採寸 2:社外情報 AI Agent自動収集データ レコメンドエンジン 最適化エンジンコア部 カスタマイズ 時系列解析 グラフ理論 量子アルゴリズム変換 統合データベース パーソナルプロファイル 追加学習エンジン プロファイルをアップデート AIコーディネイト 購入点数アップ AIデリバリー 購入単価アップ 3:画像 気になる商品の画像 セレクトレンズ 類似画像検索エンジン 商品情報 画像 似ている商品の画像を提案 ファッションレコメンド機能紹介/導入事例 株式会社コナカ様 SUIT SELECT SUIT SELECTの完全パーソナライズドAIレコメンデーション「AI Coordinate レコメンドアプリ」を開発 Arithmerの開発した「AIエージェント」が24時間SNSをモニタリングし、個人を特定しない形で世代などの属性に応じたリアルタイムトレンドを把握します。「AIプロファイリングエンジン」が、SUIT SELECT保有の数百万人の顧客属性データ・購買データ、アプリユーザーのデモグラフィックデータとあわせて解析することで、顧客のパーソナルプロファイルをよりリッチなものにします。 AIデリバリー ユーザー1人ひとりに、最適なアイテムを最適なタイミングでお届け 4つのデータをミックス: 1.「アクティブユーザー数百万人の顧客属性データと購買データ」 2.最新の第一次情報として「SNSを24時間クロールして解析・構造化したデータ」 3.アプリユーザーの「デモグラフィックデータ」 4.スタッフが構築した「2億4,752万通りのコーディネイトパターンデータ」 このビッグデータを、複数の数理的手法を組み合わせて構築した、独自アルゴリズムを搭載した以下3つのエンジンが解析 AIコーディネイト ユーザー専属のAIパーソナルスタイリスト ユーザーが選ぶのは、お気に入りの1アイテムのみ。後はAIにお任せする事でアプリが、ユーザー専属のAIパーソナルスタイリストになります。 スーツセレクトの保持する購買情報・アプリユーザーのデモグラフィックデータ・SNSから取得したトレンド・人気の着こなし・人間が感じる気候などから、AIがコーディネイトの最適解を導きます。実に2億通り以上のパターンの中からおすすめしています。AIはこの匠の技を学習し、同じことをアプリで再現しています。 セレクトレンズ アイテム総在庫約10,000点の中から、ユーザーが探し求めていたアイテムをAIが自動で見つけだします。 ユーザー自身が気になるアイテムをスマホで写真に撮るだけ。お気に入りに登録すれば、AIコーディネイトが楽しめユーザーの探し求めていたものをレコメンドできます。セレクトレンズには、全国190店舗、約1,000人のスタッフによる学習データをインプット。 学習データのインプットは1度だけでなく、継続的に実施。今この瞬間もセレクトレンズの精度は向上し続けています。 More Virtual Fitting バーチャル試着で サイズ感や試着イメージで顧客満足度向上に バーチャルフィッティングの特長 バーチャルフィッティングでECサイトの課題である「サイズ不一致」「試着感」「生地感」など 「着用時の違和感による返品」の減少へ の貢献が期待できます 【バーシャルフィッティング機能】ユーザーが自分で選ぶファッション + 自動採寸AIシステム 「自動採寸AIシステム」 を組み合わせる事によってより詳細な正確なサイズ感を スマホ1つで時間、場所によらず得ることができます。 自動採寸AIシステム詳細はこちら + VSR(バーチャルショールーム) 店舗をデジタル空間として丸ごと動画で再現。自由に巡回できる360度視点移動が可能となった事で どんな場所も容易に入れ様々な動作を臨場感あふれるバーチャル空間で、場所や時間の制約されないDX化を迅速に導入をサポート 導入までの流れ お問合せ/ヒアリング 貴社の目的や課題感についてヒアリングします。(WEB会議 or ご訪問) ご提案 ヒアリングした内容を基にアプローチ方法をご提案致します。 ご契約 合意したご提案内容を基に、契約を行います 構築開始 構築を行う、要件定義から開始致します。 ファッションレコメンド・バーチャルフィッティングは様々な業界業種で応用できます パーソナルスタイリストとして ユニフォームなどの制作イメージに オーダースーツ業界に ファッションレコメンドでユーザーの「ファッションを楽しむ」新感覚のEC体験を。 バーチャルフィッティングで「着用時の違和感による返品」の減少へ 様々な業界、業種に応用できます。まずはお気軽にお問合せください お問合せはこちら





